Searched for: school:SOM
Department/Unit:Cell Biology
Overview of Peptide and protein analysis by mass spectrometry
Zhang, Guoan; Annan, Roland S; Carr, Steven A; Neubert, Thomas A
Mass spectrometry is an indispensable tool for peptide and protein analysis owing to its speed, sensitivity, and versatility. It can be used to determine amino acid sequences of peptides, and to characterize a wide variety of post-translational modifications such as phosphorylation and glycosylation. Mass spectrometry can also be used to determine absolute and relative protein quantities, and can identify and quantify thousands of proteins from complex samples, which makes it an extremely powerful tool for systems biology studies. The main goals of this unit are to familiarize peptide and protein chemists and biologists with the types of mass spectrometers that are appropriate for the majority of their analytical needs, to describe the kinds of experiments that can be performed with these instruments on a routine basis, and to discuss the kinds of information that these experiments provide. Curr. Protoc. Mol. Biol. 108:10.21.1-10.21.30. (c) 2014 by John Wiley & Sons, Inc.
PMID: 25271712
ISSN: 1934-3647
CID: 1282972
The structure of lactoferrin-binding protein B from Neisseria meningitidis suggests roles in iron acquisition and neutralization of host defences
Brooks, Cory L; Arutyunova, Elena; Lemieux, M Joanne
Pathogens have evolved a range of mechanisms to acquire iron from the host during infection. Several Gram-negative pathogens including members of the genera Neisseria and Moraxella have evolved two-component systems that can extract iron from the host glycoproteins lactoferrin and transferrin. The homologous iron-transport systems consist of a membrane-bound transporter and an accessory lipoprotein. While the mechanism behind iron acquisition from transferrin is well understood, relatively little is known regarding how iron is extracted from lactoferrin. Here, the crystal structure of the N-terminal domain (N-lobe) of the accessory lipoprotein lactoferrin-binding protein B (LbpB) from the pathogen Neisseria meningitidis is reported. The structure is highly homologous to the previously determined structures of the accessory lipoprotein transferrin-binding protein B (TbpB) and LbpB from the bovine pathogen Moraxella bovis. Docking the LbpB structure with lactoferrin reveals extensive binding interactions with the N1 subdomain of lactoferrin. The nature of the interaction precludes apolactoferrin from binding LbpB, ensuring the specificity of iron-loaded lactoferrin. The specificity of LbpB safeguards proper delivery of iron-bound lactoferrin to the transporter lactoferrin-binding protein A (LbpA). The structure also reveals a possible secondary role for LbpB in protecting the bacteria from host defences. Following proteolytic digestion of lactoferrin, a cationic peptide derived from the N-terminus is released. This peptide, called lactoferricin, exhibits potent antimicrobial effects. The docked model of LbpB with lactoferrin reveals that LbpB interacts extensively with the N-terminal lactoferricin region. This may provide a venue for preventing the production of the peptide by proteolysis, or directly sequestering the peptide, protecting the bacteria from the toxic effects of lactoferricin.
PMCID:4188071
PMID: 25286931
ISSN: 2053-230x
CID: 2286612
The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer
Melotti, Alice; Mas, Christophe; Kuciak, Monika; Lorente-Trigos, Aiala; Borges, Isabel; Ruiz I Altaba, Ariel
Constitutive activation of canonical WNT-TCF signaling is implicated in multiple diseases, including intestine and lung cancers, but there are no WNT-TCF antagonists in clinical use. We have performed a repositioning screen for WNT-TCF response blockers aiming to recapitulate the genetic blockade afforded by dominant-negative TCF. We report that Ivermectin inhibits the expression of WNT-TCF targets, mimicking dnTCF, and that its low concentration effects are rescued by direct activation by TCFVP 16. Ivermectin inhibits the proliferation and increases apoptosis of various human cancer types. It represses the levels of C-terminal beta-CATENIN phosphoforms and of CYCLIN D1 in an okadaic acid-sensitive manner, indicating its action involves protein phosphatases. In vivo, Ivermectin selectively inhibits TCF-dependent, but not TCF-independent, xenograft growth without obvious side effects. Analysis of single semi-synthetic derivatives highlights Selamectin, urging its clinical testing and the exploration of the macrocyclic lactone chemical space. Given that Ivermectin is a safe anti-parasitic agent used by > 200 million people against river blindness, our results suggest its additional use as a therapeutic WNT-TCF pathway response blocker to treat WNT-TCF-dependent diseases including multiple cancers.
PMCID:4287931
PMID: 25143352
ISSN: 1757-4676
CID: 1142482
Reply: Tension Shielding with the embrace Device: Does It Really Improve Scars?
Gurtner, Geoffrey C; Longaker, Michael T
PMID: 25357068
ISSN: 0032-1052
CID: 1322902
Personal recollections of a life-long affair with cell biology [Meeting Abstract]
Sabatini, D D
I entered the field of cell biology during its formative phase and contributed technical advances in electron microscopy that gave new insights into the physiological roles of subcellular compartments. I concentrated for many years on the structure and function of the rough endoplasmic reticulum where I aimed at explaining mechanistically how the functional specialization of ribosomes bound to the endoplasmic reticulum membranes is achieved. This work eventually led to the formulation of the signal hypothesis with Gunter Blobel in 1971. Subsequently, my laboratory contributed to the birth of the field of protein traffic with the demonstration that membrane-bound ribosomes in the ER are also responsible for the synthesis of membrane and luminal proteins destined to other subcellular compartments, pointing to the existence of sorting signals in the newly synthesized polypeptides and corresponding discriminating trafficking mechanisms. I have derived great satisfaction from the fact that some of the work I will present, including the introduction with M. Cerejido of the MDCK cell line to study the development and properties of polarized epithelia and the discovery with Rodriguez-Boulan of the polarized budding of enveloped viruses, has helped many laboratories to continue to explore the fascinating mechanisms that contribute to generate the complex organization of eukaryotic cells
EMBASE:72160122
ISSN: 0327-9545
CID: 1925172
OOCYTES FROM WOMEN WITH DIMINISHED OVARIAN RESERVE AND OBESITY HAVE SHORTENED TELOMERES. [Meeting Abstract]
Antunes, DMF; Kalmbach, KK; Wang, F; Seth-Smith, ML; Kramer, Y; Kohlrausch, FB; Keefe, DL
ISI:000342500201342
ISSN: 1556-5653
CID: 1318102
ENHANCEMENT OF TELOMERE MAINTENANCE USING TELOMERASE ACTIVATION IN HUMAN CELLS. [Meeting Abstract]
Robinson, LG., Jr; Seth-Smith, ML; Wang, L; Wang, F; Keefe, DL
ISI:000342500200308
ISSN: 1556-5653
CID: 1317662
Painting a picture of protein interaction [Comment]
Todorovic, Vesna
PMID: 25392882
ISSN: 1548-7105
CID: 2512542
Early Intervention with Intranasal NPY Prevents Single Prolonged Stress-Triggered Impairments in Hypothalamus and Ventral Hippocampus in Male Rats
Laukova, Marcela; Alaluf, Lishay G; Serova, Lidia I; Arango, Victoria; Sabban, Esther L
Intranasal administration of neuropeptide Y (NPY) is a promising treatment strategy to reduce traumatic stress-induced neuropsychiatric symptoms of posttraumatic stress disorder (PTSD). We evaluated the potential of intranasal NPY to prevent dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, a core neuroendocrine feature of PTSD. Rats were exposed to single prolonged stress (SPS), a PTSD animal model, and infused intranasally with vehicle or NPY immediately after SPS stressors. After 7 days undisturbed, hypothalamus and hippocampus, 2 structures regulating the HPA axis activity, were examined for changes in glucocorticoid receptor (GR) and CRH expression. Plasma ACTH and corticosterone, and hypothalamic CRH mRNA, were significantly higher in the vehicle but not NPY-treated group, compared with unstressed controls. Although total GR levels were not altered in hypothalamus, a significant decrease of GR phosphorylated on Ser232 and increased FK506-binding protein 5 mRNA were observed with the vehicle but not in animals infused with intranasal NPY. In contrast, in the ventral hippocampus, only vehicle-treated animals demonstrated elevated GR protein expression and increased GR phosphorylation on Ser232, specifically in the nuclear fraction. Additionally, SPS-induced increase of CRH mRNA in the ventral hippocampus was accompanied by apparent decrease of CRH peptide particularly in the CA3 subfield, both prevented by NPY. The results show that early intervention with intranasal NPY can prevent traumatic stress-triggered dysregulation of the HPA axis likely by restoring HPA axis proper negative feedback inhibition via GR. Thus, intranasal NPY has a potential as a noninvasive therapy to prevent negative effects of traumatic stress.
PMID: 25057792
ISSN: 0013-7227
CID: 1076162
Chitosan-Assisted Immunotherapy for Intervention of Experimental Leishmaniasis via Amphotericin B-Loaded Solid Lipid Nanoparticles
Jain, Vineet; Gupta, Annie; Pawar, Vivek K; Asthana, Shalini; Jaiswal, Anil K; Dube, Anuradha; Chourasia, Manish K
Solid lipid nanoparticles (SLNs) have emerged as an excellent substitute over polymeric nanoparticles and, when incorporated with chitosan which activates the macrophage to impart an immune response, produce excellent results to fight against deleterious diseases like leishmaniasis where its parasite diminishes the immunity of the host to induce resistance. Based upon this hypothesis, chitosan-coated SLNs were developed and loaded with amphotericin B (AmB) for immunoadjuvant chemotherapy of Leishmania infection. Both uncoated and chitosan-coated AmB-loaded SLNs (AmB-SLNs) were fabricated using solvent emulsification and evaporation method. The various processes and formulation parameters involved in AmB-SLN preparation were optimized with respect to particle size and stability of the particles. In vitro hemolytic test credited the formulations to be safe when injected in the veins. The cellular uptake analysis demonstrated that the chitosan-coated AmB-SLN was more efficiently internalized into the J774A.1 cells. The in vitro antileishmanial activity revealed their high potency against Leishmania-infected cells in which chitosan-coated AmB-SLNs were distinguishedly efficacious over commercial formulations (AmBisome and Fungizone). An in vitro cytokine estimation study revealed that chitosan-coated AmB-SLNs activated the macrophages to impart a specific immune response through enhanced production of TNF-alpha and IL-12 with respect to normal control. Furthermore, cytotoxic studies in macrophages and acute toxicity studies in mice evidenced the better safety profile of developed formulation in comparison to marketed formulations. This study indicates that the AmB-SLNs are a safe and efficacious drug delivery system which promises strong competence in antileishmanial chemotherapy and immunotherapy.
PMID: 25106894
ISSN: 0273-2289
CID: 1141462