Searched for: school:SOM
Department/Unit:Cell Biology
Interleukin 17-Producing gammadeltaT Cells Promote Hepatic Regeneration in Mice
Rao, Raghavendra; Graffeo, Christopher S; Gulati, Rishabh; Jamal, Mohsin; Narayan, Suchithra; Zambirinis, Constantinos; Barilla, Rocky; Deutsch, Michael; Greco, Stephanie; Ochi, Atsuo; Tomkotter, Lena; Blobstein, Reuven; Avanzi, Antonina; Tippens, Daniel M; Gelbstein, Yisroel; Van Heerden, Eliza; Miller, George
BACKGROUND: & Aims: Subsets of leukocytes synergize with regenerative growth factors to promote hepatic regeneration. gammadeltaTau cells are early responders to inflammation-induced injury in a number of contexts. We investigated the role of gammadeltaTau cells in hepatic regeneration using mice with disruptions in Tcrd (encodes the T cell receptor delta chain) and Clec7a (encodes C-type lectin domain family 7 member a, also known as DECTIN1). METHODS: We performed partial hepatectomies on wild-type C57BL/6, CD45.1, Tcrd-/-, or Clec7a-/- mice. Cells were isolated from livers of patients and mice via mechanical and enzymatic digestion. gammadeltaTau cells were purified by fluorescence-activated cell sorting. RESULTS: In mice, partial hepatectomy upregulated expression of CCL20 and ligands of Dectin-1, associated with recruitment and activation of gammadeltaTau cells and their increased production of interleukin (IL)17 family cytokines. Recruited gammadeltaTau cells induced production of IL6 by antigen-presenting cells and suppressed expression of interferon gamma by natural killer T cells, promoting hepatocyte proliferation. Absence of IL17-producing gammadeltaTau cells or deletion of Dectin-1 prevented development of regenerative phenotypes in subsets of innate immune cells. This slowed liver regeneration and was associated with reduced expression of regenerative growth factors and cell cycle regulators. Conversely, exogenous administration of IL17 family cytokines or Dectin-1 ligands promoted regeneration. More broadly, we found that gammadeltaTau cells are required for inflammatory responses mediated by IL17 and Dectin-1. CONCLUSIONS: gammadeltaT cells regulate hepatic regeneration by producing IL22 and IL17, which have direct mitogenic effects on hepatocytes and promote a regenerative phenotype in hepatic leukocytes, respectively. Dectin-1 ligation is required for gammadeltaT cells to promote hepatic regeneration.
PMCID:4123443
PMID: 24801349
ISSN: 0016-5085
CID: 968492
Alzheimer disease risk factors--reply [Letter]
DeKosky, Steven T; Gandy, Sam
PMID: 25111207
ISSN: 2168-6157
CID: 3430922
The Role of Stem Cells in Aesthetic Surgery: Fact or Fiction?
McArdle, Adrian; Senarath-Yapa, Kshemendra; Walmsley, Graham G; Hu, Michael; Atashroo, David A; Tevlin, Ruth; Zielins, Elizabeth; Gurtner, Geoffrey C; Wan, Derrick C; Longaker, Michael T
Stem cells are attractive candidates for the development of novel therapies, targeting indications that involve functional restoration of defective tissue. Although most stem cell therapies are new and highly experimental, there are clinics around the world that exploit vulnerable patients with the hope of offering supposed stem cell therapies, many of which operate without credible scientific merit, oversight, or other patient protection.We review the potential, as well as drawbacks, for incorporation of stem cells in cosmetic procedures. A review of FDA-approved indications and ongoing clinical trials with adipose stem cells is provided. Furthermore, a "snapshot" analysis of websites using the search terms "stem cell therapy" or "stem cell treatment" or "stem cell facelift" was performed.Despite the protective net cast by regulatory agencies such as the FDA and professional societies such as the American Society of Plastic Surgeons, we are witnessing worrying advertisements for procedures such as stem cell facelifts, stem cell breast augmentations, and even stem cell vaginal rejuvenation. The marketing and promotion of stem cell procedures in aesthetic surgery is not adequately supported by clinical evidence in the majority of cases.Stem cells offer tremendous potential, but the marketplace is saturated with unsubstantiated and sometimes fraudulent claims that may place patients at risk. With plastic surgeons at the forefront of stem cell-based regenerative medicine, it is critically important that we provide an example of a rigorous approach to research, data collection, and advertising of stem cell therapies.
PMCID:4447486
PMID: 24732654
ISSN: 1529-4242
CID: 901212
Spinal cord injury models: a review
Cheriyan, T; Ryan, D J; Weinreb, J H; Cheriyan, J; Paul, J C; Lafage, V; Kirsch, T; Errico, T J
BACKGROUND: Animal spinal cord injury (SCI) models have proved invaluable in better understanding the mechanisms involved in traumatic SCI and evaluating the effectiveness of experimental therapeutic interventions. Over the past 25 years, substantial gains have been made in developing consistent, reproducible and reliable animal SCI models. STUDY DESIGN: Review. OBJECTIVE: The objective of this review was to consolidate current knowledge on SCI models and introduce newer paradigms that are currently being developed. RESULTS: SCI models are categorized based on the mechanism of injury into contusion, compression, distraction, dislocation, transection or chemical models. Contusion devices inflict a transient, acute injury to the spinal cord using a weight-drop technique, electromagnetic impactor or air pressure. Compression devices compress the cord at specific force and duration to cause SCI. Distraction SCI devices inflict graded injury by controlled stretching of the cord. Mechanical displacement of the vertebrae is utilized to produce dislocation-type SCI. Surgical transection of the cord, partial or complete, is particularly useful in regenerative medicine. Finally, chemically induced SCI replicates select components of the secondary injury cascade. Although rodents remain the most commonly used species and are best suited for preliminary SCI studies, large animal and nonhuman primate experiments better approximate human SCI. CONCLUSION: All SCI models aim to replicate SCI in humans as closely as possible. Given the recent improvements in commonly used models and development of newer paradigms, much progress is anticipated in the coming years.
PMID: 24912546
ISSN: 1362-4393
CID: 1105802
Studies in Fat Grafting: Part III. Fat Grafting Irradiated Tissue-Improved Skin Quality and Decreased Fat Graft Retention
Garza, Rebecca M; Paik, Kevin J; Chung, Michael T; Duscher, Dominik; Gurtner, Geoffrey C; Longaker, Michael T; Wan, Derrick C
BACKGROUND: Following radiation therapy, skin becomes fibrotic and can present a difficult problem for reconstructive surgeons. There is an increasing belief that fat grafting under irradiated skin can reverse the damage caused by radiation. The present study evaluated the effect of fat grafting on irradiated skin, along with fat graft quality and retention rates in irradiated tissue. METHODS: Nine adult Crl:NU-Foxn1 CD-1 mice underwent 30-Gy external beam irradiation of the scalp. Four weeks after irradiation, scalp skin from irradiated and nonirradiated mice was harvested and compared histologically for dermal thickness, collagen content, and vascular density. Human fat grafts were then injected in the subcutaneous plane of the scalp. Skin assessment was performed in the irradiated group at 2 and 8 weeks after grafting, and fat graft retention was measured at baseline and every 2 weeks up to 8 weeks after grafting using micro-computed tomography. Finally, fat graft samples were explanted at 8 weeks, and quality scoring was performed. RESULTS: Fat grafting resulted in decreased dermal thickness, decreased collagen content, and increased vascular density in irradiated skin. Computed tomographic analysis revealed significantly decreased fat graft survival in the irradiated group compared with the nonirradiated group. Histologic scoring of explanted fat grafts demonstrated no difference in quality between the irradiated and nonirradiated groups. CONCLUSIONS: Fat grafting attenuates dermal collagen deposition and vessel depletion characteristic of radiation fibrosis. Although fat graft retention rates are significantly lower in irradiated than in nonirradiated tissue, the quality of retained fat between the groups is similar.
PMCID:4116637
PMID: 25068325
ISSN: 1529-4242
CID: 1089802
Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration
Schindler, Yocheved L; Garske, Kristina M; Wang, Jinhu; Firulli, Beth A; Firulli, Anthony B; Poss, Kenneth D; Yelon, Deborah
Embryonic heart formation requires the production of an appropriate number of cardiomyocytes; likewise, cardiac regeneration following injury relies upon the recovery of lost cardiomyocytes. The basic helix-loop-helix (bHLH) transcription factor Hand2 has been implicated in promoting cardiomyocyte formation. It is unclear, however, whether Hand2 plays an instructive or permissive role during this process. Here, we find that overexpression of hand2 in the early zebrafish embryo is able to enhance cardiomyocyte production, resulting in an enlarged heart with a striking increase in the size of the outflow tract. Our evidence indicates that these increases are dependent on the interactions of Hand2 in multimeric complexes and are independent of direct DNA binding by Hand2. Proliferation assays reveal that hand2 can impact cardiomyocyte production by promoting division of late-differentiating cardiac progenitors within the second heart field. Additionally, our data suggest that hand2 can influence cardiomyocyte production by altering the patterning of the anterior lateral plate mesoderm, potentially favoring formation of the first heart field at the expense of hematopoietic and vascular lineages. The potency of hand2 during embryonic cardiogenesis suggested that hand2 could also impact cardiac regeneration in adult zebrafish; indeed, we find that overexpression of hand2 can augment the regenerative proliferation of cardiomyocytes in response to injury. Together, our studies demonstrate that hand2 can drive cardiomyocyte production in multiple contexts and through multiple mechanisms. These results contribute to our understanding of the potential origins of congenital heart disease and inform future strategies in regenerative medicine.
PMCID:4197543
PMID: 25038045
ISSN: 0950-1991
CID: 1075512
Proteome analysis reveals roles of L-DOPA in response to oxidative stress in neurons
Jami, Mohammad-Saeid; Pal, Ramavati; Hoedt, Esthelle; Neubert, Thomas A; Larsen, Jan Petter; Moller, Simon Geir
BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative movement disorder, caused by preferential dopaminergic neuronal cell death in the substantia nigra, a process also influenced by oxidative stress. L-3,4-dihydroxyphenylalanine (L-DOPA) represents the main treatment route for motor symptoms associated with PD however, its exact mode of action remains unclear. A spectrum of conflicting data suggests that L-DOPA may damage dopaminergic neurons due to oxidative stress whilst other data suggest that L-DOPA itself may induce low levels of oxidative stress, which in turn stimulates endogenous antioxidant mechanisms and neuroprotection. RESULTS: In this study we performed a two-dimensional gel electrophoresis (2DE)-based proteomic study to gain further insight into the mechanism by which L-DOPA can influence the toxic effects of H2O2 in neuronal cells. We observed that oxidative stress affects metabolic pathways as well as cytoskeletal integrity and that neuronal cells respond to oxidative conditions by enhancing numerous survival pathways. Our study underlines the complex nature of L-DOPA in PD and sheds light on the interplay between oxidative stress and L-DOPA. CONCLUSIONS: Oxidative stress changes neuronal metabolic routes and affects cytoskeletal integrity. Further, L-DOPA appears to reverse some H2O2-mediated effects evident at both the proteome and cellular level.
PMCID:4125692
PMID: 25082231
ISSN: 1471-2202
CID: 1090382
SOX2 is a cancer-specific regulator of tumour initiating potential in cutaneous squamous cell carcinoma
Siegle, Jasmin M; Basin, Alice; Sastre-Perona, Ana; Yonekubo, Yoshiya; Brown, Jessie; Sennett, Rachel; Rendl, Michael; Tsirigos, Aristotelis; Carucci, John A; Schober, Markus
Although the principles that balance stem cell self-renewal and differentiation in normal tissue homeostasis are beginning to emerge, it is still unclear whether cancer cells with tumour initiating potential are similarly governed, or whether they have acquired distinct mechanisms to sustain self-renewal and long-term tumour growth. Here we show that the transcription factor Sox2, which is not expressed in normal skin epithelium and is dispensable for epidermal homeostasis, marks tumour initiating cells (TICs) in cutaneous squamous cell carcinomas (SCCs). We demonstrate that Sox2 is required for SCC growth in mouse and human, where it enhances Nrp1/Vegf signalling to promote the expansion of TICs along the tumour-stroma interface. Our findings suggest that distinct transcriptional programmes govern self-renewal and long-term growth of TICs and normal skin epithelial stem and progenitor cells. These programmes present promising diagnostic markers and targets for cancer-specific therapies.
PMCID:4207965
PMID: 25077433
ISSN: 2041-1723
CID: 1090252
Optix defines a neuroepithelial compartment in the optic lobe of the Drosophila brain
Gold, Katrina S; Brand, Andrea H
BACKGROUND:During early brain development, the organisation of neural progenitors into a neuroepithelial sheet maintains tissue integrity during growth. Neuroepithelial cohesion and patterning is essential for orderly proliferation and neural fate specification. Neuroepithelia are regionalised by the expression of transcription factors and signalling molecules, resulting in the formation of distinct developmental, and ultimately functional, domains. RESULTS:We have discovered that the Six3/6 family orthologue Optix is an essential regulator of neuroepithelial maintenance and patterning in the Drosophila brain. Six3 and Six6 are required for mammalian eye and forebrain development, and mutations in humans are associated with severe eye and brain malformation. In Drosophila, Optix is expressed in a sharply defined region of the larval optic lobe, and its expression is reciprocal to that of the transcription factor Vsx1. Optix gain- and loss-of-function affects neuroepithelial adhesion, integrity and polarity. We find restricted cell lineage boundaries that correspond to transcription factor expression domains. CONCLUSION/CONCLUSIONS:We propose that the optic lobe is compartmentalised by expression of Optix and Vsx1. Our findings provide insight into the spatial patterning of a complex region of the brain, and suggest an evolutionarily conserved principle of visual system development.
PMCID:4127074
PMID: 25074684
ISSN: 1749-8104
CID: 5193252
Intact protein folding in the glutathione-depleted endoplasmic reticulum implicates alternative protein thiol reductants
Tsunoda, Satoshi; Avezov, Edward; Zyryanova, Alisa; Konno, Tasuku; Mendes-Silva, Leonardo; Pinho Melo, Eduardo; Harding, Heather P; Ron, David
Protein folding homeostasis in the endoplasmic reticulum (ER) requires efficient protein thiol oxidation, but also relies on a parallel reductive process to edit disulfides during the maturation or degradation of secreted proteins. To critically examine the widely held assumption that reduced ER glutathione fuels disulfide reduction, we expressed a modified form of a cytosolic glutathione-degrading enzyme, ChaC1, in the ER lumen. ChaC1(CtoS) purged the ER of glutathione eliciting the expected kinetic defect in oxidation of an ER-localized glutathione-coupled Grx1-roGFP2 optical probe, but had no effect on the disulfide editing-dependent maturation of the LDL receptor or the reduction-dependent degradation of misfolded alpha-1 antitrypsin. Furthermore, glutathione depletion had no measurable effect on induction of the unfolded protein response (UPR); a sensitive measure of ER protein folding homeostasis. These findings challenge the importance of reduced ER glutathione and suggest the existence of alternative electron donor(s) that maintain the reductive capacity of the ER.DOI: http://dx.doi.org/10.7554/eLife.03421.001.
PMCID:4109312
PMID: 25073928
ISSN: 2050-084x
CID: 1090122