Searched for: school:SOM
Department/Unit:Cell Biology
Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes
McKenney, Richard J; Huynh, Walter; Tanenbaum, Marvin E; Bhabha, Gira; Vale, Ronald D
Cytoplasmic dynein is a molecular motor that transports a large variety of cargoes (e.g., organelles, messenger RNAs, and viruses) along microtubules over long intracellular distances. The dynactin protein complex is important for dynein activity in vivo, but its precise role has been unclear. Here, we found that purified mammalian dynein did not move processively on microtubules in vitro. However, when dynein formed a complex with dynactin and one of four different cargo-specific adapter proteins, the motor became ultraprocessive, moving for distances similar to those of native cargoes in living cells. Thus, we propose that dynein is largely inactive in the cytoplasm and that a variety of adapter proteins activate processive motility by linking dynactin to dynein only when the motor is bound to its proper cargo.
PMCID:4224444
PMID: 25035494
ISSN: 1095-9203
CID: 2291562
Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines
Murray, Peter J; Allen, Judith E; Biswas, Subhra K; Fisher, Edward A; Gilroy, Derek W; Goerdt, Sergij; Gordon, Siamon; Hamilton, John A; Ivashkiv, Lionel B; Lawrence, Toby; Locati, Massimo; Mantovani, Alberto; Martinez, Fernando O; Mege, Jean-Louis; Mosser, David M; Natoli, Gioacchino; Saeij, Jeroen P; Schultze, Joachim L; Shirey, Kari Ann; Sica, Antonio; Suttles, Jill; Udalova, Irina; van Ginderachter, Jo A; Vogel, Stefanie N; Wynn, Thomas A
Description of macrophage activation is currently contentious and confusing. Like the biblical Tower of Babel, macrophage activation encompasses a panoply of descriptors used in different ways. The lack of consensus on how to define macrophage activation in experiments in vitro and in vivo impedes progress in multiple ways, including the fact that many researchers still consider there to be only two types of activated macrophages, often termed M1 and M2. Here, we describe a set of standards encompassing three principles-the source of macrophages, definition of the activators, and a consensus collection of markers to describe macrophage activation-with the goal of unifying experimental standards for diverse experimental scenarios. Collectively, we propose a common framework for macrophage-activation nomenclature.
PMCID:4123412
PMID: 25035950
ISSN: 1074-7613
CID: 1075452
Novel 1:1 labeling and purification process for C-terminal thioester and single cysteine recombinant proteins using generic peptidic toolbox reagents
Portal, Christophe F; Seifert, Jan-Marcus; Buehler, Christof; Meisner-Kober, Nicole-Claudia; Auer, Manfred
We developed a versatile set of chemical labeling reagents which allow dye ligation to the C-terminus of a protein or a single internal cysteine and target purification in a simple two-step process. This simple process results in a fully 1:1 labeled conjugate suitable for all quantitative fluorescence spectroscopy and imaging experiments. We refer to a "generic labeling toolbox" because of the flexibility to choose one of many available dyes, spacers of different lengths and compositions which increase the target solubility, a variety of affinity purification tags, and different cleavage chemistries to release the 1:1 labeled proteins. Studying protein function in vitro or in the context of live cells and organisms is of vital importance in biological research. Although label free detection technologies gain increasing interest in molecular recognition science, fluorescence spectroscopy is still the most often used detection technique for assays and screens both in academic as well as in industrial groups. For generations, fluorescence spectroscopists have labeled their proteins of interest with small fluorescent dyes by random chemical linking on the proteins' exposed lysines and cysteines. Chemical reactions with a certain excess of activated esters or maleimides of longer wavelength dyes hardly ever result in quantitative labeling of the target protein. Most of the time, more than one exposed amino acid side chain reacts. This results in a mixture of dye-protein complexes of different labeling stoichiometries and labeling sites. Only mass spectrometry allows resolving the precise chemical composition of the conjugates. In "classical" ensemble averaging fluorescent experiments, these labeled proteins are still useful, and quantification of, e.g., ligand binding experiments, is achieved via knowledge of the overall protein concentration and a fluorescent signal change which is proportional to the amount of complex formed. With the development of fluorescence fluctuation analysis techniques working at single molecule resolution, like fluorescence correlation spectroscopy (FCS), fluorescence cross correlation spectroscopy (FCCS), fluorescence intensity diffusion analysis (FIDA), etc., it became important to work with homogeneously labeled target proteins. Each molecule participating in a binding equilibrium should be detectable when it freely fluctuates through the confocal focus of a microscope. The measured photon burst for each transition contains information about the size and the stoichiometry of a protein complex. Therefore, it is important to work with reagents that contain an exact number of tracers per protein at identical positions. The ideal fluorescent tracer-protein complex stoichiometry is 1:1. While genetic tags such as fluorescent proteins (FPs) are widely used to detect proteins, FPs have several limitations compared to chemical tags. For example, FPs cannot easily compete with organic dyes in the flexibility of modification and spectral range; moreover, FPs have disadvantages in brightness and photostability and are therefore not ideal for most biochemical single molecule studies. We present the synthesis of a series of exemplaric toolbox reagents and labeling results on three target proteins which were needed for high throughput screening experiments using fluorescence fluctuation analysis at single molecule resolution. On one target, Hu-antigen R (HuR), we demonstrated the activity of the 1:1 labeled protein in ribonucleic acid (RNA) binding, and the ease of resolving the stoichiometry of an RNA-HuR complex using the same dye on protein and RNA by Fluorescence Intensity Multiple Distribution Analysis (FIMDA) detection.
PMID: 24866260
ISSN: 1520-4812
CID: 2446592
Inter-ring communication is dispensable in the reaction cycle of group II chaperonins
Yamamoto, Yohei Y; Abe, Yuki; Moriya, Kazuki; Arita, Mayuno; Noguchi, Keiichi; Ishii, Noriyuki; Sekiguchi, Hiroshi; Sasaki, Yuji C; Yohda, Masafumi
Chaperonins are ubiquitous molecular chaperones with the subunit molecular mass of 60kDa. They exist as double-ring oligomers with central cavities. An ATP-dependent conformational change of the cavity induces the folding of an unfolded protein that is captured in the cavity. In the group I chaperonins, which are present in eubacteria and eukaryotic organelles, inter-ring communication takes important role for the reaction cycle. However, there has been limited study on the inter-ring communication in the group II chaperonins that exist in archaea and the eukaryotic cytosol. In this study, we have constructed the asymmetric ring complex of a group II chaperonin using circular permutated covalent mutants. Although one ring of the asymmetric ring complex lacks ATPase or ATP binding activity, the other wild-type ring undergoes an ATP-dependent conformational change and maintains protein-folding activity. The results clearly demonstrate that inter-ring communication is dispensable in the reaction cycle of group II chaperonins.
PMID: 24859336
ISSN: 1089-8638
CID: 3119202
Specific Calpain Inhibition by Calpastatin Prevents Tauopathy and Neurodegeneration and Restores Normal Lifespan in Tau P301L Mice
Rao, Mala V; McBrayer, Mary Kate; Campbell, Jabbar; Kumar, Asok; Hashim, Audrey; Sershen, Henry; Stavrides, Philip H; Ohno, Masuo; Hutton, Michael; Nixon, Ralph A
Tau pathogenicity in Alzheimer's disease and other tauopathies is thought to involve the generation of hyperphosphorylated, truncated, and oligomeric tau species with enhanced neurotoxicity, although the generative mechanisms and the implications for disease therapy are not well understood. Here, we report a striking rescue from mutant tau toxicity in the JNPL3 mouse model of tauopathy. We show that pathological activation of calpains gives rise to a range of potentially toxic forms of tau, directly, and by activating cdk5. Calpain overactivation in brains of these mice is accelerated as a result of the marked depletion of the endogenous calpain inhibitor, calpastatin. When levels of this inhibitor are restored in neurons of JNPL3 mice by overexpressing calpastatin, tauopathy is prevented, including calpain-mediated breakdown of cytoskeletal proteins, cdk5 activation, tau hyperphosphorylation, formation of potentially neurotoxic tau fragments by either calpain or caspase-3, and tau oligomerization. Calpastatin overexpression also prevents loss of motor axons, delays disease onset, and extends survival of JNPL3 mice by 3 months to within the range of normal lifespan. Our findings support the therapeutic promise of highly specific calpain inhibition in the treatment of tauopathies and other neurodegenerative states.
PMCID:4087203
PMID: 25009256
ISSN: 0270-6474
CID: 1074822
Perceptual gap detection is mediated by gap termination responses in auditory cortex
Weible, Aldis P; Moore, Alexandra K; Liu, Christine; DeBlander, Leah; Wu, Haiyan; Kentros, Clifford; Wehr, Michael
BACKGROUND: Understanding speech in the presence of background noise often becomes increasingly difficult with age. These age-related speech processing deficits reflect impairments in temporal acuity. Gap detection is a model for temporal acuity in speech processing in which a gap inserted in white noise acts as a cue that attenuates subsequent startle responses. Lesion studies have shown that auditory cortex is necessary for the detection of brief gaps, and auditory cortical neurons respond to the end of the gap with a characteristic burst of spikes called the gap termination response (GTR). However, it remains unknown whether and how the GTR plays a causal role in gap detection. We tested this by optogenetically suppressing the activity of somatostatin- or parvalbumin-expressing inhibitory interneurons, or CaMKII-expressing excitatory neurons, in auditory cortex of behaving mice during specific epochs of a gap detection protocol. RESULTS: Suppressing interneuron activity during the postgap interval enhanced gap detection. Suppressing excitatory cells during this interval attenuated gap detection. Suppressing activity preceding the gap had the opposite behavioral effects, whereas prolonged suppression across both intervals had no effect on gap detection. CONCLUSIONS: In addition to confirming cortical involvement, we demonstrate here for the first time a causal relationship between postgap neural activity and perceptual gap detection. Furthermore, our results suggest that gap detection involves an ongoing comparison of pre- and postgap spiking activity. Finally, we propose a simple yet biologically plausible neural circuit that reproduces each of these neural and behavioral results.
PMCID:4131718
PMID: 24980499
ISSN: 1879-0445
CID: 2436722
Microfluidic approaches for epithelial cell layer culture and characterisation
Thuenauer, Roland; Rodriguez-Boulan, Enrique; Romer, Winfried
In higher eukaryotes, epithelial cell layers line most body cavities and form selective barriers that regulate the exchange of solutes between compartments. In order to fulfil these functions, the cells assume a polarised architecture and maintain two distinct plasma membrane domains, the apical domain facing the lumen and the basolateral domain facing other cells and the extracellular matrix. Microfluidic biochips offer the unique opportunity to establish novel in vitro models of epithelia in which the in vivo microenvironment of epithelial cells is precisely reconstituted. In addition, analytical tools to monitor biologically relevant parameters can be directly integrated on-chip. In this review we summarise recently developed biochip designs for culturing epithelial cell layers. Since endothelial cell layers, which line blood vessels, have similar barrier functions and polar organisation as epithelial cell layers, we also discuss biochips for culturing endothelial cell layers. Furthermore, we review approaches to integrate tools to analyse and manipulate epithelia and endothelia in microfluidic biochips; including methods to perform electrical impedance spectroscopy; methods to detect substances undergoing trans-epithelial transport via fluorescence, spectrophotometry, and mass spectrometry; techniques to mechanically stimulate cells via stretching and fluid flow-induced shear stress; and methods to carry out high-resolution imaging of vesicular trafficking using light microscopy. Taken together, this versatile microfluidic toolbox enables novel experimental approaches to characterise epithelial monolayers.
PMCID:4286366
PMID: 24668405
ISSN: 1364-5528
CID: 2145602
Lessons learned from scale-up of voluntary medical male circumcision focusing on adolescents: benefits, challenges, and potential opportunities for linkages with adolescent HIV, sexual, and reproductive health services
Njeuhmeli, Emmanuel; Hatzold, Karin; Gold, Elizabeth; Mahler, Hally; Kripke, Katharine; Seifert-Ahanda, Kim; Castor, Delivette; Mavhu, Webster; Mugurungi, Owen; Ncube, Gertrude; Koshuma, Sifuni; Sgaier, Sema; Conly, Shanti R; Kasedde, Susan
BACKGROUND AND METHODS: By December 2013, it was estimated that close to 6 million men had been circumcised in the 14 priority countries for scaling up voluntary medical male circumcision (VMMC), the majority being adolescents (10-19 years). This article discusses why efforts to scale up VMMC should prioritize adolescent men, drawing from new evidence and experiences at the international, country, and service delivery levels. Furthermore, we review the extent to which VMMC programs have reached adolescents, addressed their specific needs, and can be linked to their sexual and reproductive health and other key services. RESULTS AND DISCUSSION: In priority countries, adolescents represent 34%-55% of the target population to be circumcised, whereas program data from these countries show that adolescents represent between 35% and 74% of the circumcised men. VMMC for adolescents has several advantages: uptake of services among adolescents is culturally and socially more acceptable than for adults; there are fewer barriers regarding sexual abstinence during healing or female partner pressures; VMMC performed before the age of sexual debut has maximum long-term impact on reducing HIV risk at the individual level and consequently reduces the risk of transmission in the population. Offered as a comprehensive package, adolescent VMMC can potentially increase public health benefits and offers opportunities for addressing gender norms. Additional research is needed to assess whether current VMMC services address the specific needs of adolescent clients, to test adapted tools, and to assess linkages between VMMC and other adolescent-focused HIV, health, and social services.
PMID: 24918595
ISSN: 1944-7884
CID: 2439922
Atomic force microscopic detection enabling multiplexed low-cycle-number quantitative polymerase chain reaction for biomarker assays [Letter]
Mikheikin, Andrey; Olsen, Anita; Leslie, Kevin; Mishra, Bud; Gimzewski, James K; Reed, Jason
Quantitative polymerase chain reaction is the current "golden standard" for quantification of nucleic acids; however, its utility is constrained by an inability to easily and reliably detect multiple targets in a single reaction. We have successfully overcome this problem with a novel combination of two widely used approaches: target-specific multiplex amplification with 15 cycles of polymerase chain reaction (PCR), followed by single-molecule detection of amplicons with atomic force microscopy (AFM). In test experiments comparing the relative expression of ten transcripts in two different human total RNA samples, we find good agreement between our single reaction, multiplexed PCR/AFM data, and data from 20 individual singleplex quantitative PCR reactions. This technique can be applied to virtually any analytical problem requiring sensitive measurement concentrations of multiple nucleic acid targets.
PMCID:4082389
PMID: 24918650
ISSN: 1520-6882
CID: 1684812
Interactions with RNA direct the Polycomb group protein SCML2 to chromatin where it represses target genes
Bonasio, Roberto; Lecona, Emilio; Narendra, Varun; Voigt, Philipp; Parisi, Fabio; Kluger, Yuval; Reinberg, Danny
Polycomb repressive complex-1 (PRC1) is essential for the epigenetic regulation of gene expression. SCML2 is a mammalian homolog of Drosophila SCM, a Polycomb-group protein that associates with PRC1. In this study, we show that SCML2A, an SCML2 isoform tightly associated to chromatin, contributes to PRC1 localization and also directly enforces repression of certain Polycomb target genes. SCML2A binds to PRC1 via its SPM domain and interacts with ncRNAs through a novel RNA-binding region (RBR). Targeting of SCML2A to chromatin involves the coordinated action of the MBT domains, RNA binding, and interaction with PRC1 through the SPM domain. Deletion of the RBR reduces the occupancy of SCML2A at target genes and overexpression of a mutant SCML2A lacking the RBR causes defects in PRC1 recruitment. These observations point to a role for ncRNAs in regulating SCML2 function and suggest that SCML2 participates in the epigenetic control of transcription directly and in cooperation with PRC1.DOI: http://dx.doi.org/10.7554/eLife.02637.001.
PMCID:4074974
PMID: 24986859
ISSN: 2050-084x
CID: 1065812