Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14089


Bringing law and order to the cytoskeleton and cell junctions: An interview with Werner Franke

Cowin, Pamela
PMID: 24854769
ISSN: 1543-5180
CID: 1013492

Combinatorial actions of Tgfbeta and Activin ligands promote oligodendrocyte development and CNS myelination

Dutta, Dipankar J; Zameer, Andleeb; Mariani, John N; Zhang, Jingya; Asp, Linnea; Huynh, Jimmy; Mahase, Sean; Laitman, Benjamin M; Argaw, Azeb Tadesse; Mitiku, Nesanet; Urbanski, Mateusz; Melendez-Vasquez, Carmen V; Casaccia, Patrizia; Hayot, Fernand; Bottinger, Erwin P; Brown, Chester W; John, Gareth R
In the embryonic CNS, development of myelin-forming oligodendrocytes is limited by bone morphogenetic proteins, which constitute one arm of the transforming growth factor-beta (Tgfbeta) family and signal canonically via Smads 1/5/8. Tgfbeta ligands and Activins comprise the other arm and signal via Smads 2/3, but their roles in oligodendrocyte development are incompletely characterized. Here, we report that Tgfbeta ligands and activin B (ActB) act in concert in the mammalian spinal cord to promote oligodendrocyte generation and myelination. In mouse neural tube, newly specified oligodendrocyte progenitors (OLPs) are first exposed to Tgfbeta ligands in isolation, then later in combination with ActB during maturation. In primary OLP cultures, Tgfbeta1 and ActB differentially activate canonical Smad3 and non-canonical MAP kinase signaling. Both ligands enhance viability, and Tgfbeta1 promotes proliferation while ActB supports maturation. Importantly, co-treatment strongly activates both signaling pathways, producing an additive effect on viability and enhancing both proliferation and differentiation such that mature oligodendrocyte numbers are substantially increased. Co-treatment promotes myelination in OLP-neuron co-cultures, and maturing oligodendrocytes in spinal cord white matter display strong Smad3 and MAP kinase activation. In spinal cords of ActB-deficient Inhbb(-/-) embryos, apoptosis in the oligodendrocyte lineage is increased and OLP numbers transiently reduced, but numbers, maturation and myelination recover during the first postnatal week. Smad3(-/-) mice display a more severe phenotype, including diminished viability and proliferation, persistently reduced mature and immature cell numbers, and delayed myelination. Collectively, these findings suggest that, in mammalian spinal cord, Tgfbeta ligands and ActB together support oligodendrocyte development and myelin formation.
PMCID:4050697
PMID: 24917498
ISSN: 0950-1991
CID: 1033682

Poly-l-Arginine Topical Lotion Tested in a Mouse Model for Frostbite Injury

Auerbach, Lauren J; Declerk, Brittney K; Garrison Fathman, C; Gurtner, Geoffrey C; Auerbach, Paul S
BACKGROUND: Frostbite injury occurs when exposure to cold results in frozen tissue. We recently reported a novel mouse model for frostbite injury to be used in screening potentially therapeutic drugs and other modalities. OBJECTIVE: We used the mouse skin frostbite model to evaluate the effect of poly-l-arginine contained in lotion (PAL) applied topically to involved skin. METHODS: Sixty mice were studied in a randomized, double-blind method. Standardized 2.9-cm-diameter circles were tattooed on the mouse dorsum. Magnets snap frozen in dry ice (-78.5 degrees C) were used to create a frostbite injury on skin within the circle as a continuous 5-minute freeze. Mice were treated with prefreeze placebo, postthaw placebo, combined prefreeze and postthaw placebo, prefreeze with PAL, postthaw with PAL, or combined prefreeze and postthaw with PAL. Appearance, healing rate, tissue loss, and histology were recorded until the wounds were healed. RESULTS: Application of PAL before inducing frostbite injury resulted in decreased tissue loss as compared with other treatment conditions. CONCLUSIONS: Applying PAL topically to frostbitten mouse skin caused decreased tissue loss. Poly-l-arginine should be studied further to determine whether it is a beneficial therapeutic modality for frostbite injury.
PMID: 24631228
ISSN: 1080-6032
CID: 901172

Expression of microsomal triglyceride transfer protein in lipoprotein-synthesizing tissues of the developing chicken embryo

Eresheim, Christine; Plieschnig, Julia; Ivessa, N Erwin; Schneider, Wolfgang J; Hermann, Marcela
In contrast to mammals, in the chicken major sites of lipoprotein synthesis and secretion are not only the liver and intestine, but also the kidney and the embryonic yolk sac. Two key components in the assembly of triglyceride-rich lipoproteins are the microsomal triglyceride transfer protein (MTP) and apolipoprotein B (apoB). We have analyzed the expression of MTP in the embryonic liver, small intestine, and kidney, and have studied the expression of MTP in, and the secretion of apoB from, the developing yolk sac (YS). Transcript and protein levels of MTP increase during embryogenesis in YS, liver, kidney, and small intestine, and decrease in YS, embryonic liver, and kidney after hatching. In small intestine, the MTP mRNA level rises sharply during the last trimester of embryo development (after day 15), while MTP protein is detectable only after hatching (day 21). In the YS of 15- and 20-day old embryos, apoB secretion was detected by pulse-chase metabolic radiolabeling experiments and subsequent immunoprecipitation. Taken together, our data reveal the importance of coordinated production of MTP and apoB in chicken tissues capable of secreting triglyceride-rich lipoproteins even before hatching.
PMCID:4008936
PMID: 24394625
ISSN: 0300-9084
CID: 971012

Photoactivation of Endogenous Latent Transforming Growth Factor-beta1 Directs Dental Stem Cell Differentiation for Regeneration

Arany, Praveen R; Cho, Andrew; Hunt, Tristan D; Sidhu, Gursimran; Shin, Kyungsup; Hahm, Eason; Huang, George X; Weaver, James; Chen, Aaron Chih-Hao; Padwa, Bonnie L; Hamblin, Michael R; Barcellos-Hoff, Mary Helen; Kulkarni, Ashok B; J Mooney, David
Rapid advancements in the field of stem cell biology have led to many current efforts to exploit stem cells as therapeutic agents in regenerative medicine. However, current ex vivo cell manipulations common to most regenerative approaches create a variety of technical and regulatory hurdles to their clinical translation, and even simpler approaches that use exogenous factors to differentiate tissue-resident stem cells carry significant off-target side effects. We show that non-ionizing, low-power laser (LPL) treatment can instead be used as a minimally invasive tool to activate an endogenous latent growth factor complex, transforming growth factor-beta1 (TGF-beta1), that subsequently differentiates host stem cells to promote tissue regeneration. LPL treatment induced reactive oxygen species (ROS) in a dose-dependent manner, which, in turn, activated latent TGF-beta1 (LTGF-beta1) via a specific methionine residue (at position 253 on LAP). Laser-activated TGF-beta1 was capable of differentiating human dental stem cells in vitro. Further, an in vivo pulp capping model in rat teeth demonstrated significant increase in dentin regeneration after LPL treatment. These in vivo effects were abrogated in TGF-beta receptor II (TGF-betaRII) conditional knockout (DSPP(Cre)TGF-betaRII(fl/fl)) mice or when wild-type mice were given a TGF-betaRI inhibitor. These findings indicate a pivotal role for TGF-beta in mediating LPL-induced dental tissue regeneration. More broadly, this work outlines a mechanistic basis for harnessing resident stem cells with a light-activated endogenous cue for clinical regenerative applications.
PMCID:4113395
PMID: 24871130
ISSN: 1946-6234
CID: 1018752

Adipose-derived stem cells: a review of signaling networks governing cell fate and regenerative potential in the context of craniofacial and long bone skeletal repair

Senarath-Yapa, Kshemendra; McArdle, Adrian; Renda, Andrea; Longaker, Michael T; Quarto, Natalina
Improvements in medical care, nutrition and social care are resulting in a commendable change in world population demographics with an ever increasing skew towards an aging population. As the proportion of the world's population that is considered elderly increases, so does the incidence of osteodegenerative disease and the resultant burden on healthcare. The increasing demand coupled with the limitations of contemporary approaches, have provided the impetus to develop novel tissue regeneration therapies. The use of stem cells, with their potential for self-renewal and differentiation, is one potential solution. Adipose-derived stem cells (ASCs), which are relatively easy to harvest and readily available have emerged as an ideal candidate. In this review, we explore the potential for ASCs to provide tangible therapies for craniofacial and long bone skeletal defects, outline key signaling pathways that direct these cells and describe how the developmental signaling program may provide clues on how to guide these cells in vivo. This review also provides an overview of the importance of establishing an osteogenic microniche using appropriately customized scaffolds and delineates some of the key challenges that still need to be overcome for adult stem cell skeletal regenerative therapy to become a clinical reality.
PMCID:4100096
PMID: 24865492
ISSN: 1422-0067
CID: 1216692

IRE1a constitutes a negative feedback loop with BMP2 and acts as a novel mediator in modulating osteogenic differentiation

Guo, F-J; Jiang, R; Xiong, Z; Xia, F; Li, M; Chen, L; Liu, C-J
Bone morphogenetic protein 2 (BMP2) is known to activate unfolded protein response (UPR) signaling molecules, such as BiP (IgH chain-binding protein), PERK (PKR-like ER-resistant kinase), and IRE1alpha. Inositol-requiring enzyme-1a (IRE1a), as one of three unfolded protein sensors in UPR signaling pathways, can be activated during ER stress. Granulin-epithelin precursor (GEP) is an autocrine growth factor that has been implicated in embryonic development, tissue repair, tumorigenesis, and inflammation. However, the influence on IRE1a in BMP2-induced osteoblast differentiation has not yet been elucidated. Herein we demonstrate that overexpression of IRE1a inhibits osteoblast differentiation, as revealed by reduced activity of alkaline phosphatase (ALP) and osteocalcin; however, knockdown of IRE1a via the RNAi approach stimulates osteoblastogenesis. Mechanistic studies revealed that the expression of IRE1a during osteoblast was a consequence of JunB transcription factor binding to several AP1 sequence (TGAG/CTCA) in the 5'-flanking regulatory region of the IRE1a gene, followed by transcription. In addition, GEP induces IRE1a expressions and this induction of IRE1a by GEP depends on JunB. Furthermore, IRE1a inhibition of GEP-induced osteoblastogenesis relies on JunB. Besides, GEP is required for IRE1a inhibition of BMP2-induced bone formation. Collectively, these findings demonstrate that IRE1a negatively regulates BMP2-induced osteoblast differentiation and this IRE1a inhibition effect depends on GEP growth factor. Thus, IRE1a, BMP2, GEP growth factor, and JunB transcription factor form a regulatory loop and act in concert in the course of osteoblastogenesis.
PMCID:4047903
PMID: 24853417
ISSN: 2041-4889
CID: 1004602

Phosphoprotein of human parainfluenza virus type 3 blocks autophagosome-lysosome fusion to increase virus production

Ding, Binbin; Zhang, Guangyuan; Yang, Xiaodan; Zhang, Shengwei; Chen, Longyun; Yan, Qin; Xu, Mengyao; Banerjee, Amiya K; Chen, Mingzhou
Autophagy is a multistep process in which cytoplasmic components, including invading pathogens, are captured by autophagosomes that subsequently fuse with degradative lysosomes. Negative-strand RNA viruses, including paramyxoviruses, have been shown to alter autophagy, but the molecular mechanisms remain largely unknown. We demonstrate that human parainfluenza virus type 3 (HPIV3) induces incomplete autophagy by blocking autophagosome-lysosome fusion, resulting in increased virus production. The viral phosphoprotein (P) is necessary and sufficient to inhibition autophagosome degradation. P binds to SNAP29 and inhibits its interaction with syntaxin17, thereby preventing these two host SNARE proteins from mediating autophagosome-lysome fusion. Incomplete autophagy and resultant autophagosome accumulation increase extracellular viral production but do not affect viral protein synthesis. These findings highlight how viruses can block autophagosome degradation by disrupting the function of SNARE proteins.
PMID: 24832451
ISSN: 1931-3128
CID: 1424922

Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity

Nagareddy, Prabhakara R; Kraakman, Michael; Masters, Seth L; Stirzaker, Roslynn A; Gorman, Darren J; Grant, Ryan W; Dragoljevic, Dragana; Hong, Eun Shil; Abdel-Latif, Ahmed; Smyth, Susan S; Choi, Sung Hee; Korner, Judith; Bornfeldt, Karin E; Fisher, Edward A; Dixit, Vishwa Deep; Tall, Alan R; Goldberg, Ira J; Murphy, Andrew J
Obesity is associated with infiltration of macrophages into adipose tissue (AT), contributing to insulin resistance and diabetes. However, relatively little is known regarding the origin of AT macrophages (ATMs). We discovered that murine models of obesity have prominent monocytosis and neutrophilia, associated with proliferation and expansion of bone marrow (BM) myeloid progenitors. AT transplantation conferred myeloid progenitor proliferation in lean recipients, while weight loss in both mice and humans (via gastric bypass) was associated with a reversal of monocytosis and neutrophilia. Adipose S100A8/A9 induced ATM TLR4/MyD88 and NLRP3 inflammasome-dependent IL-1beta production. IL-1beta interacted with the IL-1 receptor on BM myeloid progenitors to stimulate the production of monocytes and neutrophils. These studies uncover a positive feedback loop between ATMs and BM myeloid progenitors and suggest that inhibition of TLR4 ligands or the NLRP3-IL-1beta signaling axis could reduce AT inflammation and insulin resistance in obesity.
PMCID:4048939
PMID: 24807222
ISSN: 1550-4131
CID: 970302

The Role of Hypoxia-Inducible Factor in Wound Healing

Hong, Wan Xing; Hu, Michael S; Esquivel, Mikaela; Liang, Grace Y; Rennert, Robert C; McArdle, Adrian; Paik, Kevin J; Duscher, Dominik; Gurtner, Geoffrey C; Lorenz, H Peter; Longaker, Michael T
Significance: Poor wound healing remains a significant health issue for a large number of patients in the United States. The physiologic response to local wound hypoxia plays a critical role in determining the success of the normal healing process. Hypoxia-inducible factor-1 (HIF-1), as the master regulator of oxygen homeostasis, is an important determinant of healing outcomes. HIF-1 contributes to all stages of wound healing through its role in cell migration, cell survival under hypoxic conditions, cell division, growth factor release, and matrix synthesis throughout the healing process. Recent Advances: Positive regulators of HIF-1, such as prolyl-4-hydroxylase inhibitors, have been shown to be beneficial in enhancing diabetic ischemic wound closure and are currently undergoing clinical trials for treatment of several human-ischemia-based conditions. Critical Issues: HIF-1 deficiency and subsequent failure to respond to hypoxic stimuli leads to chronic hypoxia, which has been shown to contribute to the formation of nonhealing ulcers. In contrast, overexpression of HIF-1 has been implicated in fibrotic disease through its role in increasing myofibroblast differentiation leading to excessive matrix production and deposition. Both positive and negative regulators of HIF-1 therefore provide important therapeutic targets that can be used to manipulate HIF-1 expression where an excess or deficiency in HIF-1 is known to correlate with pathogenesis. Future Directions: Targeting HIF-1 during wound healing has many important clinical implications for tissue repair. Counteracting the detrimental effects of excessive or deficient HIF-1 signaling by modulating HIF-1 expression may improve future management of poorly healing wounds.
PMCID:4005494
PMID: 24804159
ISSN: 2162-1918
CID: 971292