Searched for: school:SOM
Department/Unit:Cell Biology
ADAMTS-7 forms a positive feedback loop with TNF-alpha in the pathogenesis of osteoarthritis
Lai, Yongjie; Bai, Xiaohui; Zhao, Yunpeng; Tian, Qingyun; Liu, Ben; Lin, Edward A; Chen, Yuqing; Lee, Brendan; G Appleton, C Thomas; Beier, Frank; Yu, Xiu-Ping; Liu, Chuan-Ju
OBJECTIVE: To examine the expression of ADAMTS-7 during the progression of osteoarthritis (OA), defining its role in the pathogenesis of OA, and elucidating the molecular events involved. METHODS: ADAMTS-7 expression in cartilage of a rat OA model was assayed using immunohistochemistry. Cartilage-specific ADAMTS-7 transgenic mice and ADAMTS-7 small interfering (si)RNA knockdown mice were generated and used to analyse OA progression in both spontaneous and surgically induced OA models. Cartilage degradation and OA was evaluated using Safranin-O staining, immunohistochemistry, ELISA and western blotting. In addition, mRNA expression of tumour necrosis factor (TNF)-alpha and metalloproteinases known to be involved in cartilage degeneration in OA was analysed. Furthermore, the transactivation of ADAMTS-7 by TNF-alpha and its downstream NF-kappaB signalling was measured using reporter gene assay. RESULTS: ADAMTS-7 expression was elevated during disease progression in the surgically induced rat OA model. Targeted overexpression of ADAMTS-7 in chondrocytes led to chondrodysplasia characterised by short-limbed dwarfism and a delay in endochondral ossification in 'young mice' and a spontaneous OA-like phenotype in 'aged' mice. In addition, overexpression of ADAMTS-7 led to exaggerated breakdown of cartilage and accelerated OA progression, while knockdown of ADAMTS-7 attenuated degradation of cartilage matrix and protected against OA development, in surgically induced OA models. ADAMTS-7 upregulated TNF-alpha and metalloproteinases associated with OA; in addition, TNF-alpha induced ADAMTS-7 through NF-kappaB signalling. CONCLUSIONS: ADAMTS-7 and TNF-alpha form a positive feedback loop in the regulation of cartilage degradation and OA progression, making them potential molecular targets for prevention and treatment of joint degenerative diseases, including OA.
PMCID:4418017
PMID: 23928557
ISSN: 0003-4967
CID: 512782
Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration
Schindler, Yocheved L; Garske, Kristina M; Wang, Jinhu; Firulli, Beth A; Firulli, Anthony B; Poss, Kenneth D; Yelon, Deborah
Embryonic heart formation requires the production of an appropriate number of cardiomyocytes; likewise, cardiac regeneration following injury relies upon the recovery of lost cardiomyocytes. The basic helix-loop-helix (bHLH) transcription factor Hand2 has been implicated in promoting cardiomyocyte formation. It is unclear, however, whether Hand2 plays an instructive or permissive role during this process. Here, we find that overexpression of hand2 in the early zebrafish embryo is able to enhance cardiomyocyte production, resulting in an enlarged heart with a striking increase in the size of the outflow tract. Our evidence indicates that these increases are dependent on the interactions of Hand2 in multimeric complexes and are independent of direct DNA binding by Hand2. Proliferation assays reveal that hand2 can impact cardiomyocyte production by promoting division of late-differentiating cardiac progenitors within the second heart field. Additionally, our data suggest that hand2 can influence cardiomyocyte production by altering the patterning of the anterior lateral plate mesoderm, potentially favoring formation of the first heart field at the expense of hematopoietic and vascular lineages. The potency of hand2 during embryonic cardiogenesis suggested that hand2 could also impact cardiac regeneration in adult zebrafish; indeed, we find that overexpression of hand2 can augment the regenerative proliferation of cardiomyocytes in response to injury. Together, our studies demonstrate that hand2 can drive cardiomyocyte production in multiple contexts and through multiple mechanisms. These results contribute to our understanding of the potential origins of congenital heart disease and inform future strategies in regenerative medicine.
PMCID:4197543
PMID: 25038045
ISSN: 0950-1991
CID: 1075512
Alzheimer disease risk factors--reply [Letter]
DeKosky, Steven T; Gandy, Sam
PMID: 25111207
ISSN: 2168-6157
CID: 3430922
Spinal cord injury models: a review
Cheriyan, T; Ryan, D J; Weinreb, J H; Cheriyan, J; Paul, J C; Lafage, V; Kirsch, T; Errico, T J
BACKGROUND: Animal spinal cord injury (SCI) models have proved invaluable in better understanding the mechanisms involved in traumatic SCI and evaluating the effectiveness of experimental therapeutic interventions. Over the past 25 years, substantial gains have been made in developing consistent, reproducible and reliable animal SCI models. STUDY DESIGN: Review. OBJECTIVE: The objective of this review was to consolidate current knowledge on SCI models and introduce newer paradigms that are currently being developed. RESULTS: SCI models are categorized based on the mechanism of injury into contusion, compression, distraction, dislocation, transection or chemical models. Contusion devices inflict a transient, acute injury to the spinal cord using a weight-drop technique, electromagnetic impactor or air pressure. Compression devices compress the cord at specific force and duration to cause SCI. Distraction SCI devices inflict graded injury by controlled stretching of the cord. Mechanical displacement of the vertebrae is utilized to produce dislocation-type SCI. Surgical transection of the cord, partial or complete, is particularly useful in regenerative medicine. Finally, chemically induced SCI replicates select components of the secondary injury cascade. Although rodents remain the most commonly used species and are best suited for preliminary SCI studies, large animal and nonhuman primate experiments better approximate human SCI. CONCLUSION: All SCI models aim to replicate SCI in humans as closely as possible. Given the recent improvements in commonly used models and development of newer paradigms, much progress is anticipated in the coming years.
PMID: 24912546
ISSN: 1362-4393
CID: 1105802
Phagocytic ability declines with age in adult Drosophila hemocytes
Horn, Lucas; Leips, Jeff; Starz-Gaiano, Michelle
Most multicellular organisms show a physiological decline in immune function with age. However, little is known about the mechanisms underlying these changes. We examined Drosophila melanogaster, an important model for identifying genes affecting innate immunity and senescence, to explore the role of phagocytosis in age-related immune dysfunction. We characterized the localized response of immune cells at the dorsal vessel to bacterial infection in 1-week- and 5-week-old flies. We developed a quantitative phagocytosis assay for adult Drosophila and utilized this to characterize the effect of age on phagocytosis in transgenic and natural variant lines. We showed that genes necessary for bacterial engulfment in other contexts are also required in adult flies. We found that blood cells from young and old flies initially engulf bacteria equally well, while cells from older flies accumulate phagocytic vesicles and thus are less capable of destroying pathogens. Our results have broad implications for understanding how the breakdown in cellular processes influences immune function with age.
PMCID:4116448
PMID: 24828474
ISSN: 1474-9726
CID: 2141662
Studies in Fat Grafting: Part III. Fat Grafting Irradiated Tissue-Improved Skin Quality and Decreased Fat Graft Retention
Garza, Rebecca M; Paik, Kevin J; Chung, Michael T; Duscher, Dominik; Gurtner, Geoffrey C; Longaker, Michael T; Wan, Derrick C
BACKGROUND: Following radiation therapy, skin becomes fibrotic and can present a difficult problem for reconstructive surgeons. There is an increasing belief that fat grafting under irradiated skin can reverse the damage caused by radiation. The present study evaluated the effect of fat grafting on irradiated skin, along with fat graft quality and retention rates in irradiated tissue. METHODS: Nine adult Crl:NU-Foxn1 CD-1 mice underwent 30-Gy external beam irradiation of the scalp. Four weeks after irradiation, scalp skin from irradiated and nonirradiated mice was harvested and compared histologically for dermal thickness, collagen content, and vascular density. Human fat grafts were then injected in the subcutaneous plane of the scalp. Skin assessment was performed in the irradiated group at 2 and 8 weeks after grafting, and fat graft retention was measured at baseline and every 2 weeks up to 8 weeks after grafting using micro-computed tomography. Finally, fat graft samples were explanted at 8 weeks, and quality scoring was performed. RESULTS: Fat grafting resulted in decreased dermal thickness, decreased collagen content, and increased vascular density in irradiated skin. Computed tomographic analysis revealed significantly decreased fat graft survival in the irradiated group compared with the nonirradiated group. Histologic scoring of explanted fat grafts demonstrated no difference in quality between the irradiated and nonirradiated groups. CONCLUSIONS: Fat grafting attenuates dermal collagen deposition and vessel depletion characteristic of radiation fibrosis. Although fat graft retention rates are significantly lower in irradiated than in nonirradiated tissue, the quality of retained fat between the groups is similar.
PMCID:4116637
PMID: 25068325
ISSN: 1529-4242
CID: 1089802
Integration of UPRER and Oxidative Stress Signaling in the Control of Intestinal Stem Cell Proliferation
Wang, Lifen; Zeng, Xiankun; Ryoo, Hyung Don; Jasper, Heinrich
The Unfolded Protein Response of the endoplasmic reticulum (UPRER) controls proteostasis by adjusting the protein folding capacity of the ER to environmental and cell-intrinsic conditions. In metazoans, loss of proteostasis results in degenerative and proliferative diseases and cancers. The cellular and molecular mechanisms causing these phenotypes remain poorly understood. Here we show that the UPRER is a critical regulator of intestinal stem cell (ISC) quiescence in Drosophila melanogaster. We find that ISCs require activation of the UPRER for regenerative responses, but that a tissue-wide increase in ER stress triggers ISC hyperproliferation and epithelial dysplasia in aging animals. These effects are mediated by ISC-specific redox signaling through Jun-N-terminal Kinase (JNK) and the transcription factor CncC. Our results identify a signaling network of proteostatic and oxidative stress responses that regulates ISC function and regenerative homeostasis in the intestinal epithelium.
PMCID:4148219
PMID: 25166757
ISSN: 1553-7390
CID: 1162622
The Role of Stem Cells in Aesthetic Surgery: Fact or Fiction?
McArdle, Adrian; Senarath-Yapa, Kshemendra; Walmsley, Graham G; Hu, Michael; Atashroo, David A; Tevlin, Ruth; Zielins, Elizabeth; Gurtner, Geoffrey C; Wan, Derrick C; Longaker, Michael T
Stem cells are attractive candidates for the development of novel therapies, targeting indications that involve functional restoration of defective tissue. Although most stem cell therapies are new and highly experimental, there are clinics around the world that exploit vulnerable patients with the hope of offering supposed stem cell therapies, many of which operate without credible scientific merit, oversight, or other patient protection.We review the potential, as well as drawbacks, for incorporation of stem cells in cosmetic procedures. A review of FDA-approved indications and ongoing clinical trials with adipose stem cells is provided. Furthermore, a "snapshot" analysis of websites using the search terms "stem cell therapy" or "stem cell treatment" or "stem cell facelift" was performed.Despite the protective net cast by regulatory agencies such as the FDA and professional societies such as the American Society of Plastic Surgeons, we are witnessing worrying advertisements for procedures such as stem cell facelifts, stem cell breast augmentations, and even stem cell vaginal rejuvenation. The marketing and promotion of stem cell procedures in aesthetic surgery is not adequately supported by clinical evidence in the majority of cases.Stem cells offer tremendous potential, but the marketplace is saturated with unsubstantiated and sometimes fraudulent claims that may place patients at risk. With plastic surgeons at the forefront of stem cell-based regenerative medicine, it is critically important that we provide an example of a rigorous approach to research, data collection, and advertising of stem cell therapies.
PMCID:4447486
PMID: 24732654
ISSN: 1529-4242
CID: 901212
SOX2 is a cancer-specific regulator of tumour initiating potential in cutaneous squamous cell carcinoma
Siegle, Jasmin M; Basin, Alice; Sastre-Perona, Ana; Yonekubo, Yoshiya; Brown, Jessie; Sennett, Rachel; Rendl, Michael; Tsirigos, Aristotelis; Carucci, John A; Schober, Markus
Although the principles that balance stem cell self-renewal and differentiation in normal tissue homeostasis are beginning to emerge, it is still unclear whether cancer cells with tumour initiating potential are similarly governed, or whether they have acquired distinct mechanisms to sustain self-renewal and long-term tumour growth. Here we show that the transcription factor Sox2, which is not expressed in normal skin epithelium and is dispensable for epidermal homeostasis, marks tumour initiating cells (TICs) in cutaneous squamous cell carcinomas (SCCs). We demonstrate that Sox2 is required for SCC growth in mouse and human, where it enhances Nrp1/Vegf signalling to promote the expansion of TICs along the tumour-stroma interface. Our findings suggest that distinct transcriptional programmes govern self-renewal and long-term growth of TICs and normal skin epithelial stem and progenitor cells. These programmes present promising diagnostic markers and targets for cancer-specific therapies.
PMCID:4207965
PMID: 25077433
ISSN: 2041-1723
CID: 1090252
Proteome analysis reveals roles of L-DOPA in response to oxidative stress in neurons
Jami, Mohammad-Saeid; Pal, Ramavati; Hoedt, Esthelle; Neubert, Thomas A; Larsen, Jan Petter; Moller, Simon Geir
BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative movement disorder, caused by preferential dopaminergic neuronal cell death in the substantia nigra, a process also influenced by oxidative stress. L-3,4-dihydroxyphenylalanine (L-DOPA) represents the main treatment route for motor symptoms associated with PD however, its exact mode of action remains unclear. A spectrum of conflicting data suggests that L-DOPA may damage dopaminergic neurons due to oxidative stress whilst other data suggest that L-DOPA itself may induce low levels of oxidative stress, which in turn stimulates endogenous antioxidant mechanisms and neuroprotection. RESULTS: In this study we performed a two-dimensional gel electrophoresis (2DE)-based proteomic study to gain further insight into the mechanism by which L-DOPA can influence the toxic effects of H2O2 in neuronal cells. We observed that oxidative stress affects metabolic pathways as well as cytoskeletal integrity and that neuronal cells respond to oxidative conditions by enhancing numerous survival pathways. Our study underlines the complex nature of L-DOPA in PD and sheds light on the interplay between oxidative stress and L-DOPA. CONCLUSIONS: Oxidative stress changes neuronal metabolic routes and affects cytoskeletal integrity. Further, L-DOPA appears to reverse some H2O2-mediated effects evident at both the proteome and cellular level.
PMCID:4125692
PMID: 25082231
ISSN: 1471-2202
CID: 1090382