Searched for: school:SOM
Department/Unit:Cell Biology
Atomic force microscopic detection enabling multiplexed low-cycle-number quantitative polymerase chain reaction for biomarker assays [Letter]
Mikheikin, Andrey; Olsen, Anita; Leslie, Kevin; Mishra, Bud; Gimzewski, James K; Reed, Jason
Quantitative polymerase chain reaction is the current "golden standard" for quantification of nucleic acids; however, its utility is constrained by an inability to easily and reliably detect multiple targets in a single reaction. We have successfully overcome this problem with a novel combination of two widely used approaches: target-specific multiplex amplification with 15 cycles of polymerase chain reaction (PCR), followed by single-molecule detection of amplicons with atomic force microscopy (AFM). In test experiments comparing the relative expression of ten transcripts in two different human total RNA samples, we find good agreement between our single reaction, multiplexed PCR/AFM data, and data from 20 individual singleplex quantitative PCR reactions. This technique can be applied to virtually any analytical problem requiring sensitive measurement concentrations of multiple nucleic acid targets.
PMCID:4082389
PMID: 24918650
ISSN: 1520-6882
CID: 1684812
Interactions with RNA direct the Polycomb group protein SCML2 to chromatin where it represses target genes
Bonasio, Roberto; Lecona, Emilio; Narendra, Varun; Voigt, Philipp; Parisi, Fabio; Kluger, Yuval; Reinberg, Danny
Polycomb repressive complex-1 (PRC1) is essential for the epigenetic regulation of gene expression. SCML2 is a mammalian homolog of Drosophila SCM, a Polycomb-group protein that associates with PRC1. In this study, we show that SCML2A, an SCML2 isoform tightly associated to chromatin, contributes to PRC1 localization and also directly enforces repression of certain Polycomb target genes. SCML2A binds to PRC1 via its SPM domain and interacts with ncRNAs through a novel RNA-binding region (RBR). Targeting of SCML2A to chromatin involves the coordinated action of the MBT domains, RNA binding, and interaction with PRC1 through the SPM domain. Deletion of the RBR reduces the occupancy of SCML2A at target genes and overexpression of a mutant SCML2A lacking the RBR causes defects in PRC1 recruitment. These observations point to a role for ncRNAs in regulating SCML2 function and suggest that SCML2 participates in the epigenetic control of transcription directly and in cooperation with PRC1.DOI: http://dx.doi.org/10.7554/eLife.02637.001.
PMCID:4074974
PMID: 24986859
ISSN: 2050-084x
CID: 1065812
FGFR3 induces degradation of BMP type I receptor to regulate skeletal development
Qi, Huabing; Jin, Min; Duan, Yaqi; Du, Xiaolan; Zhang, Yuanquan; Ren, Fangli; Wang, Yinyin; Tian, Qingyun; Wang, Xiaofeng; Wang, Quan; Zhu, Ying; Xie, Yangli; Liu, Chuanju; Cao, Xu; Mishina, Yuji; Chen, Di; Deng, Chu-Xia; Chang, Zhijie; Chen, Lin
Fibroblast growth factors (FGFs) and their receptors (FGFRs) play significant roles in vertebrate organogenesis and morphogenesis. FGFR3 is a negative regulator of chondrogenesis and multiple mutations with constitutive activity of FGFR3 result in achondroplasia, one of the most common dwarfisms in humans, but the molecular mechanism remains elusive. In this study, we found that chondrocyte-specific deletion of BMP type I receptor a (Bmpr1a) rescued the bone overgrowth phenotype observed in Fgfr3 deficient mice by reducing chondrocyte differentiation. Consistently, using in vitro chondrogenic differentiation assay system, we demonstrated that FGFR3 inhibited BMPR1a-mediated chondrogenic differentiation. Furthermore, we showed that FGFR3 hyper-activation resulted in impaired BMP signaling in chondrocytes of mouse growth plates. We also found that FGFR3 inhibited BMP-2- or constitutively activated BMPR1-induced phosphorylation of Smads through a mechanism independent of its tyrosine kinase activity. We found that FGFR3 facilitates BMPR1a to degradation through Smurf1-mediated ubiquitination pathway. We demonstrated that down-regulation of BMP signaling by BMPR1 inhibitor dorsomorphin led to the retardation of chondrogenic differentiation, which mimics the effect of FGF-2 on chondrocytes and BMP-2 treatment partially rescued the retarded growth of cultured bone rudiments from thanatophoric dysplasia type II mice. Our findings reveal that FGFR3 promotes the degradation of BMPR1a, which plays an important role in the pathogenesis of FGFR3-related skeletal dysplasia.
PMCID:4111238
PMID: 24657641
ISSN: 0006-3002
CID: 863262
Discussion: osteoblastic differentiation of wharton jelly biopsy specimens and their mesenchymal stromal cells after serum-free culture
Than, Peter A; Gurtner, Geoffrey C
PMID: 25028858
ISSN: 1529-4242
CID: 1075182
A Current Approach to Statin Intolerance
Tompkins, Rose; Schwartzbard, Arthur; Gianos, Eugenia; Fisher, Edward; Weintraub, Howard
Statins are the first line pharmacotherapy for cholesterol reduction. Use of these drugs in large, randomized clinical trials have consistently shown significant reductions in major vascular events including death, myocardial infarction, stroke, and coronary revascularization. The updated guidelines for the treatment of high blood cholesterol from the ACC/AHA, will lead to a rise in the number of patients taking statins. Hence, statin intolerance may subsequently increase, emphasizing the need to understand and treat this important problem.Clinical Pharmacology & Therapeutics (2014); Accepted article preview online 11 April 2014; doi:10.1038/clpt.2014.84.
PMID: 24727470
ISSN: 0009-9236
CID: 900722
Gene expression in fetal murine keratinocytes and fibroblasts
Hu, Michael S; Januszyk, Michael; Hong, Wan Xing; Walmsley, Graham G; Zielins, Elizabeth R; Atashroo, David A; Maan, Zeshaan N; McArdle, Adrian; Takanishi, Danny M Jr; Gurtner, Geoffrey C; Longaker, Michael T; Lorenz, Hermann Peter
BACKGROUND: Early fetuses heal wounds without the formation of a scar. Many studies have attempted to explain this remarkable phenomenon. However, the exact mechanism remains unknown. Herein, we examine the predominant cell types of the epidermis and dermis-the keratinocyte and fibroblast-during different stages of fetal development to better understand the changes that lead to scarring wound repair versus regeneration. MATERIALS AND METHODS: Keratinocytes and fibroblasts were harvested and cultured from the dorsal skin of time-dated BALB/c fetuses. Total RNA was isolated and microarray analysis was performed using chips with 42,000 genes. Significance analysis of microarrays was used to select genes with >2-fold expression differences with a false discovery rate <2. Enrichment analysis was performed on significant genes to identify differentially expressed pathways. RESULTS: By comparing the gene expression profile of keratinocytes from E16 versus E18 fetuses, we identified 24 genes that were downregulated at E16. Analysis of E16 and E18 fibroblasts revealed 522 differentially expressed genes. Enrichment analysis showed the top 20 signaling pathways that were downregulated in E16 keratinocytes and upregulated or downregulated in E16 fibroblasts. CONCLUSIONS: Our data reveal 546 differentially expressed genes in keratinocytes and fibroblasts between the scarless and scarring transition. In addition, a total of 60 signaling pathways have been identified to be either upregulated or downregulated in these cell types. The genes and pathways recognized by our study may prove to be essential targets that may discriminate between fetal wound regeneration and adult wound repair.
PMCID:4113470
PMID: 24726057
ISSN: 0022-4804
CID: 901202
Grid cells and cortical representation
Moser, Edvard I; Roudi, Yasser; Witter, Menno P; Kentros, Clifford; Bonhoeffer, Tobias; Moser, May-Britt
One of the grand challenges in neuroscience is to comprehend neural computation in the association cortices, the parts of the cortex that have shown the largest expansion and differentiation during mammalian evolution and that are thought to contribute profoundly to the emergence of advanced cognition in humans. In this Review, we use grid cells in the medial entorhinal cortex as a gateway to understand network computation at a stage of cortical processing in which firing patterns are shaped not primarily by incoming sensory signals but to a large extent by the intrinsic properties of the local circuit.
PMID: 24917300
ISSN: 1471-0048
CID: 2436732
Developing Core Outcome Measurement Sets for Clinical Trials: OMERACT Filter 2.0
Boers, Maarten; Kirwan, John R; Wells, George; Beaton, Dorcas; Gossec, Laure; d'Agostino, Maria-Antonietta; Conaghan, Philip G; Bingham, Clifton O 3rd; Brooks, Peter; Landewe, Robert; March, Lyn; Simon, Lee S; Singh, Jasvinder A; Strand, Vibeke; Tugwell, Peter
BACKGROUND: Lack of standardization of outcome measures limits the usefulness of clinical trial evidence to inform health care decisions. This can be addressed by agreeing on a minimum core set of outcome measures per health condition, containing measures relevant to patients and decision makers. Since 1992, the Outcome Measures in Rheumatology (OMERACT) consensus initiative has successfully developed core sets for many rheumatologic conditions, actively involving patients since 2002. Its expanding scope required an explicit formulation of its underlying conceptual framework and process. METHODS: Literature searches and iterative consensus process (surveys and group meetings) of stakeholders including patients, health professionals, and methodologists within and outside rheumatology. RESULTS: To comprehensively sample patient-centered and intervention-specific outcomes, a framework emerged that comprises three core "Areas," namely Death, Life Impact, and Pathophysiological Manifestations; and one strongly recommended Resource Use. Through literature review and consensus process, core set development for any specific health condition starts by identifying at least one core "Domain" within each of the Areas to formulate the "Core Domain Set." Next, at least one applicable measurement instrument for each core Domain is identified to formulate a "Core Outcome Measurement Set." Each instrument must prove to be truthful (valid), discriminative, and feasible. In 2012, 96% of the voting participants (n=125) at the OMERACT 11 consensus conference endorsed this model and process. CONCLUSION: The OMERACT Filter 2.0 explicitly describes a comprehensive conceptual framework and a recommended process to develop core outcome measurement sets for rheumatology likely to be useful as a template in other areas of health care.
PMID: 24582946
ISSN: 0895-4356
CID: 910242
Studies in Fat Grafting: Part II. Effects of Injection Mechanics on Material Properties of Fat
Atashroo, David; Raphel, Jordan; Chung, Michael T; Paik, Kevin J; Parisi-Amon, Andreina; McArdle, Adrian; Senarath-Yapa, Kshemendra; Zielins, Elizabeth R; Tevlin, Ruth; Duldulao, Chris; Walmsley, Graham G; Hu, Michael S; Momeni, Arash; Domecus, Brian; Rimsa, Joe R; Greenberg, Lauren; Gurtner, Geoffrey C; Longaker, Michael T; Wan, Derrick C
BACKGROUND: Although fat grafting can address many soft-tissue deficits, results remain inconsistent. In this study, the authors compared physical properties of fat following injection using an automated, low-shear device or the modified Coleman technique. METHODS: Lipoaspirate was obtained from nine patients and processed for injection using either a modified Coleman technique or an automated, low-shear device. Fat was passed through a 2-mm cannula and compared with minimally processed fat. A rheometer was used to measure the storage modulus and shear rate at which tissues began to lose their solid-like properties. Viscosity was also measured, and gross properties of treatment groups were evaluated qualitatively with a glass slide test. RESULTS: Fat injected through an automated, low-shear device closely matched physical properties of minimally processed fat. The storage modulus (G') of fat for the device group was greater than for the modified Coleman group, and the onset of breakdown was delayed. Similarly, viscosity measurement of fat from the automated device closely matched minimally processed fat and was greater than that of othe modified Coleman group. CONCLUSIONS: The physical properties of lipoaspirate processed using an automated, low-shear device with a 2-mm cannula preserved the intactness of fat more than the modified Coleman technique. The authors' rheologic data demonstrate less damage using an automated device compared with the modified Coleman technique and potentially support its use for improved fat graft integrity.
PMCID:4101917
PMID: 25028817
ISSN: 1529-4242
CID: 1075162
A novel genome-wide in vivo screen for metastatic suppressors in human colon cancer identifies the positive WNT-TCF pathway modulators TMED3 and SOX12
Duquet, Arnaud; Melotti, Alice; Mishra, Sonakshi; Malerba, Monica; Seth, Chandan; Conod, Arwen; Ruiz I Altaba, Ariel
The progression of tumors to the metastatic state involves the loss of metastatic suppressor functions. Finding these, however, is difficult as in vitro assays do not fully predict metastatic behavior, and the majority of studies have used cloned cell lines, which do not reflect primary tumor heterogeneity. Here, we have designed a novel genome-wide screen to identify metastatic suppressors using primary human tumor cells in mice, which allows saturation screens. Using this unbiased approach, we have tested the hypothesis that endogenous colon cancer metastatic suppressors affect WNT-TCF signaling. Our screen has identified two novel metastatic suppressors: TMED3 and SOX12, the knockdown of which increases metastatic growth after direct seeding. Moreover, both modify the type of self-renewing spheroids, but only knockdown of TMED3 also induces spheroid cell spreading and lung metastases from a subcutaneous xenograft. Importantly, whereas TMED3 and SOX12 belong to different families involved in protein secretion and transcriptional regulation, both promote endogenous WNT-TCF activity. Treatments for advanced or metastatic colon cancer may thus not benefit from WNT blockers, and these may promote a worse outcome.
PMCID:4119353
PMID: 24920608
ISSN: 1757-4676
CID: 1033752