Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14167


Improved repair of dermal wounds in mice lacking microRNA-155

van Solingen, Coen; Araldi, Elisa; Chamorro-Jorganes, Aranzazu; Fernandez-Hernando, Carlos; Suarez, Yajaira
Wound healing is a well-regulated but complex process that involves haemostasis, inflammation, proliferation and maturation. Recent reports suggest that microRNAs (miRs) play important roles in dermal wound healing. In fact, miR deregulation has been linked with impaired wound repair. miR-155 has been shown to be induced by inflammatory mediators and plays a central regulatory role in immune responses. We have investigated the potential role of miR-155 in wound healing. By creating punch wounds in the skin of mice, we found an increased expression of miR-155 in wound tissue when compared with healthy skin. Interestingly, analysis of wounds of mice lacking the expression of miR-155 (miR-155-/- ) revealed an increased wound closure when compared with wild-type animals. Also, the accelerated wound closing correlated with elevated numbers of macrophages in wounded tissue. Gene expression analysis of wounds tissue and macrophages isolated from miR-155-/- mice that were treated with interleukin-4 demonstrated an increased expression of miR-155 targets (BCL6, RhoA and SHIP1) as well as, the finding in inflammatory zone-1 (FIZZ1) gene, when compared with WT mice. Moreover, the up-regulated levels of FIZZ1 in the wound tissue of miR-155-/- mice correlated with an increased deposition of type-1 collagens, a phenomenon known to be beneficial in wound closure. Our data indicate that the absence of miR-155 has beneficial effects in the wound healing process.
PMCID:4112003
PMID: 24636235
ISSN: 1582-1838
CID: 894592

XBP1S, a BMP2-inducible transcription factor, accelerates endochondral bone growth by activating GEP growth factor

Guo, Feng-Jin; Xiong, Zhangyuan; Han, Xiaofeng; Liu, Chuanju; Liu, Yanna; Jiang, Rong; Zhang, Peng
We previously reported that transcription factor XBP1S binds to RUNX2 and enhances chondrocyte hypertrophy through acting as a cofactor of RUNX2. Herein, we report that XBP1S is a key downstream molecule of BMP2 and is required for BMP2-mediated chondrocyte differentiation. XBP1S is up-regulated during chondrocyte differentiation and demonstrates the temporal and spatial expression pattern during skeletal development. XBP1S stimulates chondrocyte differentiation from mesenchymal stem cells in vitro and endochondral ossification ex vivo. In addition, XBP1S activates granulin-epithelin precursor (GEP), a growth factor known to stimulate chondrogenesis, and endogenous GEP is required, at least in part, for XBP1S-stimulated chondrocyte hypertrophy, mineralization and endochondral bone formation. Furthermore, XBP1S enhances GEP-stimulated chondrogenesis and endochondral bone formation. Collectively, these findings demonstrate that XBP1S, a BMP2-inducible transcription factor, positively regulates endochondral bone formation by activating GEP chondrogenic growth factor.
PMCID:4508155
PMID: 24636354
ISSN: 1582-1838
CID: 848582

The Role of ANK Interactions with MYBBP1a and SPHK1 in Catabolic Events of Articular Chondrocytes

Minashima, Takeshi; Campbell, Kirk A; Hadley, Scott R; Zhang, Ying; Kirsch, Thorsten
OBJECTIVE: To determine the role of ANK/Myb-binding protein 1a (MYBBP1a) and sphingosine kinase 1 (SPHK1) interactions in catabolic events of articular chondrocytes. METHOD: ANK/MYBBP1a and SPHK1 interactions were identified using yeast two-hybrid screening and co-immunoprecipitation. To determine the role of these interactions in catabolic events of articular chondrocytes, ank/ank and wild type mouse chondrocytes transfected with full-length or mutant ank expression vectors or femoral heads were treated with interleukin-1beta (IL-1beta) in the absence or presence of SPHK inhibitor. Catabolic marker mRNA levels were analyzed by real time PCR; proteoglycan loss using safranin O staining and MMP-13 immunostaining were determined in femoral head explants; NF-kappaB activity was determined by transfecting chondrocytes with a NF-kappaB-specific luciferase reporter and analyzing nuclear translocation of p65 by immunoblotting; MYBBP1a nuclear or cytoplasmic amounts were determined by immunohistochemistry and immunoblotting. RESULTS: The ANK N-terminal region interacted with SPHK1, whereas a cytoplasmic C-terminal loop interacted with MYBBP1a. Lack of ANK/MYBBP1a and SPHK1 interactions in ank/ank chondrocytes resulted in increased MYBBP1a nuclear amounts and decreased SPHK1 activity, and consequently decreased NF-kappaB activity, catabolic marker mRNA levels, proteoglycan loss, and MMP-13 immunostaining in IL-1beta-treated articular chondrocytes or femoral heads. Transfection with full-length ank expression vector reduced nuclear MYBBP1a amounts and fully restored SPHK and NF-kappaB activities in IL-1beta-treated ank/ank chondrocytes, whereas transfection with P5L or F376del mutant ank reduced nuclear MYBBP1a or increased SPHK activity, respectively, and consequently either transfection only partially restored NF-kappaB activity. CONCLUSION: ANK/MYBBP1a and SPHK1 interactions stimulate catabolic events in IL-1beta-mediated cartilage degradation.
PMID: 24747173
ISSN: 1063-4584
CID: 898222

FBXW7 mutations in melanoma and a new therapeutic paradigm

Aydin, Iraz T; Melamed, Rachel D; Adams, Sarah J; Castillo-Martin, Mireia; Demir, Ahu; Bryk, Diana; Brunner, Georg; Cordon-Cardo, Carlos; Osman, Iman; Rabadan, Raul; Celebi, Julide Tok
BACKGROUND: Melanoma is a heterogeneous tumor with subgroups requiring distinct therapeutic strategies. Genetic dissection of melanoma subgroups and identification of therapeutic agents are of great interest in the field. These efforts will ultimately lead to treatment strategies, likely combinatorial, based on genetic information. METHODS: To identify "driver" genes that can be targeted therapeutically, we screened metastatic melanomas for somatic mutations by exome sequencing followed by selecting those with available targeted therapies directed to the gene product or its functional partner. The FBXW7 gene and its substrate NOTCH1 were identified and further examined. Mutation profiling of FBXW7, biological relevance of these mutations and its inactivation, and pharmacological inhibition of NOTCH1 were examined using in vitro and in vivo assays. RESULTS: We found FBXW7 to be mutated in eight (8.1%) melanoma patients in our cohort (n = 103). Protein expression analysis in human tissue samples (n = 96) and melanoma cell lines (n = 20) showed FBXW7 inactivation as a common event in melanoma (40.0% of cell lines). As a result of FBXW7 loss, we observed an accumulation of its substrates, such as NOTCH1. Ectopic expression of mutant forms of FBXW7 (by 2.4-fold), as well as silencing of FBXW7 in immortalized melanocytes, accelerated tumor formation in vivo (by 3.9-fold). Its inactivation led to NOTCH1 activation, upregulation of NOTCH1 target genes (by 2.6-fold), and promotion of tumor angiogenesis and resulted in tumor shrinkage upon NOTCH1 inhibition (by fivefold). CONCLUSIONS: Our data provides evidence on FBXW7 as a critical tumor suppressor mutated and inactivated in melanoma that results in sustained NOTCH1 activation and renders NOTCH signaling inhibition as a promising therapeutic strategy in this setting.
PMCID:4081626
PMID: 24838835
ISSN: 0027-8874
CID: 1065322

HIV-1 interacts with human endogenous retrovirus K (HML-2) envelopes derived from human primary lymphocytes

Brinzevich, Daria; Young, George R; Sebra, Robert; Ayllon, Juan; Maio, Susan M; Deikus, Gintaras; Chen, Benjamin K; Fernandez-Sesma, Ana; Simon, Viviana; Mulder, Lubbertus C F
Human endogenous retroviruses (HERVs) are viruses that have colonized the germ line and spread through vertical passage. Only the more recently acquired HERVs, such as the HERV-K (HML-2) group, maintain coding open reading frames. Expression of HERV-Ks has been linked to different pathological conditions, including HIV infection, but our knowledge on which specific HERV-Ks are expressed in primary lymphocytes currently is very limited. To identify the most expressed HERV-Ks in an unbiased manner, we analyzed their expression patterns in peripheral blood lymphocytes using Pacific Biosciences (PacBio) single-molecule real-time (SMRT) sequencing. We observe that three HERV-Ks (KII, K102, and K18) constitute over 90% of the total HERV-K expression in primary human lymphocytes of five different donors. We also show experimentally that two of these HERV-K env sequences (K18 and K102) retain their ability to produce full-length and posttranslationally processed envelope proteins in cell culture. We show that HERV-K18 Env can be incorporated into HIV-1 but not simian immunodeficiency virus (SIV) particles. Moreover, HERV-K18 Env incorporation into HIV-1 virions is dependent on HIV-1 matrix. Taken together, we generated high-resolution HERV-K expression profiles specific for activated human lymphocytes. We found that one of the most abundantly expressed HERV-K envelopes not only makes a full-length protein but also specifically interacts with HIV-1. Our findings raise the possibility that these endogenous retroviral Env proteins could directly influence HIV-1 replication. IMPORTANCE: Here, we report the HERV-K expression profile of primary lymphocytes from 5 different healthy donors. We used a novel deep-sequencing technology (PacBio SMRT) that produces the long reads necessary to discriminate the complexity of HERV-K expression. We find that primary lymphocytes express up to 32 different HERV-K envelopes, and that at least two of the most expressed Env proteins retain their ability to make a protein. Importantly, one of them, the envelope glycoprotein of HERV-K18, is incorporated into HIV-1 in an HIV matrix-specific fashion. The ramifications of such interactions are discussed, as the possibility of HIV-1 target tissue broadening and immune evasion are considered.
PMCID:4093866
PMID: 24648457
ISSN: 1098-5514
CID: 2286102

Physiological networks and disease functions of RNA-binding protein AUF1

Moore, Ashleigh E; Chenette, Devon M; Larkin, Lauren C; Schneider, Robert J
Regulated messenger RNA (mRNA) decay is an essential mechanism that governs proper control of gene expression. In fact, many of the most physiologically potent proteins are encoded by short-lived mRNAs, many of which contain AU-rich elements (AREs) in their 3'-untranslated region (3'-UTR). AREs target mRNAs for post-transcriptional regulation, generally rapid decay, but also stabilization and translation inhibition. AREs control mRNA turnover and translation activities through association with trans-acting RNA-binding proteins that display high affinity for these AU-rich regulatory elements. AU-rich element RNA-binding protein (AUF1), also known as heterogeneous nuclear ribonucleoprotein D (HNRNPD), is an extensively studied AU-rich binding protein (AUBP). AUF1 has been shown to regulate ARE-mRNA turnover, primarily functioning to promote rapid ARE-mRNA degradation. In certain cellular contexts, AUF1 has also been shown to regulate gene expression at the translational and even the transcriptional level. AUF1 comprises a family of four related protein isoforms derived from a common pre-mRNA by differential exon splicing. AUF1 isoforms have been shown to display multiple and distinct functions that include the ability to target ARE-mRNA stability or decay, and transcriptional activation of certain genes that is controlled by their differential subcellular locations, expression levels, and post-translational modifications. AUF1 has been implicated in controlling a variety of physiological functions through its ability to regulate the expression of numerous mRNAs containing 3'-UTR AREs, thereby coordinating functionally related pathways. This review highlights the physiological functions of AUF1-mediated regulation of mRNA and gene expression, and the consequences of deficient AUF1 levels in different physiological settings. For further resources related to this article, please visit the WIREs website. Conflict of interest: The authors have declared no conflicts of interest for this article.
PMID: 24687816
ISSN: 1757-7004
CID: 895642

Poly-l-Arginine Topical Lotion Tested in a Mouse Model for Frostbite Injury

Auerbach, Lauren J; Declerk, Brittney K; Garrison Fathman, C; Gurtner, Geoffrey C; Auerbach, Paul S
BACKGROUND: Frostbite injury occurs when exposure to cold results in frozen tissue. We recently reported a novel mouse model for frostbite injury to be used in screening potentially therapeutic drugs and other modalities. OBJECTIVE: We used the mouse skin frostbite model to evaluate the effect of poly-l-arginine contained in lotion (PAL) applied topically to involved skin. METHODS: Sixty mice were studied in a randomized, double-blind method. Standardized 2.9-cm-diameter circles were tattooed on the mouse dorsum. Magnets snap frozen in dry ice (-78.5 degrees C) were used to create a frostbite injury on skin within the circle as a continuous 5-minute freeze. Mice were treated with prefreeze placebo, postthaw placebo, combined prefreeze and postthaw placebo, prefreeze with PAL, postthaw with PAL, or combined prefreeze and postthaw with PAL. Appearance, healing rate, tissue loss, and histology were recorded until the wounds were healed. RESULTS: Application of PAL before inducing frostbite injury resulted in decreased tissue loss as compared with other treatment conditions. CONCLUSIONS: Applying PAL topically to frostbitten mouse skin caused decreased tissue loss. Poly-l-arginine should be studied further to determine whether it is a beneficial therapeutic modality for frostbite injury.
PMID: 24631228
ISSN: 1080-6032
CID: 901172

Combinatorial actions of Tgfbeta and Activin ligands promote oligodendrocyte development and CNS myelination

Dutta, Dipankar J; Zameer, Andleeb; Mariani, John N; Zhang, Jingya; Asp, Linnea; Huynh, Jimmy; Mahase, Sean; Laitman, Benjamin M; Argaw, Azeb Tadesse; Mitiku, Nesanet; Urbanski, Mateusz; Melendez-Vasquez, Carmen V; Casaccia, Patrizia; Hayot, Fernand; Bottinger, Erwin P; Brown, Chester W; John, Gareth R
In the embryonic CNS, development of myelin-forming oligodendrocytes is limited by bone morphogenetic proteins, which constitute one arm of the transforming growth factor-beta (Tgfbeta) family and signal canonically via Smads 1/5/8. Tgfbeta ligands and Activins comprise the other arm and signal via Smads 2/3, but their roles in oligodendrocyte development are incompletely characterized. Here, we report that Tgfbeta ligands and activin B (ActB) act in concert in the mammalian spinal cord to promote oligodendrocyte generation and myelination. In mouse neural tube, newly specified oligodendrocyte progenitors (OLPs) are first exposed to Tgfbeta ligands in isolation, then later in combination with ActB during maturation. In primary OLP cultures, Tgfbeta1 and ActB differentially activate canonical Smad3 and non-canonical MAP kinase signaling. Both ligands enhance viability, and Tgfbeta1 promotes proliferation while ActB supports maturation. Importantly, co-treatment strongly activates both signaling pathways, producing an additive effect on viability and enhancing both proliferation and differentiation such that mature oligodendrocyte numbers are substantially increased. Co-treatment promotes myelination in OLP-neuron co-cultures, and maturing oligodendrocytes in spinal cord white matter display strong Smad3 and MAP kinase activation. In spinal cords of ActB-deficient Inhbb(-/-) embryos, apoptosis in the oligodendrocyte lineage is increased and OLP numbers transiently reduced, but numbers, maturation and myelination recover during the first postnatal week. Smad3(-/-) mice display a more severe phenotype, including diminished viability and proliferation, persistently reduced mature and immature cell numbers, and delayed myelination. Collectively, these findings suggest that, in mammalian spinal cord, Tgfbeta ligands and ActB together support oligodendrocyte development and myelin formation.
PMCID:4050697
PMID: 24917498
ISSN: 0950-1991
CID: 1033682

Highlighting Kathleen Green and Mario Delmar, Guest Editors of Special Issue (part 2): Junctional Targets of Skin and Heart Disease

Cowin, Pamela
Abstract Cell Communication and Adhesion has been fortunate to enlist two pioneers of epidermal and cardiac cell junctions, Kathleen Green and Mario Delmar, as Guest Editors of a two part series on junctional targets of skin and heart disease. Part 2 of this series begins with an overview from Dipal Patel and Kathy Green comparing epidermal desmosomes to cardiac area composita junctions, and surveying the pathogenic mechanisms resulting from mutations in their components in heart disease. This is followed by a review from David Kelsell on the role of desmosomal mutation in inherited syndromes involving skin fragility. Agnieszka Kobeliak discusses how structural deficits in the epidermal barrier intersect with the NFkB signaling pathway to induce inflammatory diseases such as psoriasis and atopic dermatitis. Farah Sheikh reviews the specialized junctional components in cardiomyocytes of the cardiac conduction system and Robert Gourdie discusses how molecular complexes between sodium channels and gap junction proteins within the perijunctional microdomains within the intercalated disc facilitate conduction. Glenn Radice evaluates the role of N-cadherin in heart. Andre Kleber and Chris Chen explore new approaches to study junctional mechanotransduction in vitro with a focus on the effects of connexin ablation and the role of cadherins, respectively. To complement this series of reviews, we have interviewed Werner Franke, whose systematic documentation the tissue-specific complexity of desmosome composition and pioneering discovery of the cardiac area composita junction greatly facilitated elucidation of the role of desmosomal components in the pathophysiology of human heart disease.
PMID: 24854768
ISSN: 1543-5180
CID: 1013482

Bringing law and order to the cytoskeleton and cell junctions: An interview with Werner Franke

Cowin, Pamela
PMID: 24854769
ISSN: 1543-5180
CID: 1013492