Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14105


The transcription factors islet and Lim3 combinatorially regulate ion channel gene expression

Wolfram, Verena; Southall, Tony D; Günay, Cengiz; Prinz, Astrid A; Brand, Andrea H; Baines, Richard A
Expression of appropriate ion channels is essential to allow developing neurons to form functional networks. Our previous studies have identified LIM-homeodomain (HD) transcription factors (TFs), expressed by developing neurons, that are specifically able to regulate ion channel gene expression. In this study, we use the technique of DNA adenine methyltransferase identification (DamID) to identify putative gene targets of four such TFs that are differentially expressed in Drosophila motoneurons. Analysis of targets for Islet (Isl), Lim3, Hb9, and Even-skipped (Eve) identifies both ion channel genes and genes predicted to regulate aspects of dendritic and axonal morphology. Significantly, some ion channel genes are bound by more than one TF, consistent with the possibility of combinatorial regulation. One such gene is Shaker (Sh), which encodes a voltage-dependent fast K(+) channel (Kv1.1). DamID reveals that Sh is bound by both Isl and Lim3. We used body wall muscle as a test tissue because in conditions of low Ca(2+), the fast K(+) current is carried solely by Sh channels (unlike neurons in which a second fast K(+) current, Shal, also contributes). Ectopic expression of isl, but not Lim3, is sufficient to reduce both Sh transcript and Sh current level. By contrast, coexpression of both TFs is additive, resulting in a significantly greater reduction in both Sh transcript and current compared with isl expression alone. These observations provide evidence for combinatorial activity of Isl and Lim3 in regulating ion channel gene expression.
PMCID:3921425
PMID: 24523544
ISSN: 1529-2401
CID: 5193222

Reduced BMPR2 expression induces GM-CSF translation and macrophage recruitment in humans and mice to exacerbate pulmonary hypertension

Sawada, Hirofumi; Saito, Toshie; Nickel, Nils P; Alastalo, Tero-Pekka; Glotzbach, Jason P; Chan, Roshelle; Haghighat, Leila; Fuchs, Gabriele; Januszyk, Michael; Cao, Aiqin; Lai, Ying-Ju; Perez, Vinicio de Jesus; Kim, Yu-Mee; Wang, Lingli; Chen, Pin-I; Spiekerkoetter, Edda; Mitani, Yoshihide; Gurtner, Geoffrey C; Sarnow, Peter; Rabinovitch, Marlene
Idiopathic pulmonary arterial hypertension (PAH [IPAH]) is an insidious and potentially fatal disease linked to a mutation or reduced expression of bone morphogenetic protein receptor 2 (BMPR2). Because intravascular inflammatory cells are recruited in IPAH pathogenesis, we hypothesized that reduced BMPR2 enhances production of the potent chemokine granulocyte macrophage colony-stimulating factor (GM-CSF) in response to an inflammatory perturbation. When human pulmonary artery (PA) endothelial cells deficient in BMPR2 were stimulated with tumor necrosis factor (TNF), a twofold increase in GM-CSF was observed and related to enhanced messenger RNA (mRNA) translation. The mechanism was associated with disruption of stress granule formation. Specifically, loss of BMPR2 induced prolonged phospho-p38 mitogen-activated protein kinase (MAPK) in response to TNF, and this increased GADD34-PP1 phosphatase activity, dephosphorylating eukaryotic translation initiation factor (eIF2alpha), and derepressing GM-CSF mRNA translation. Lungs from IPAH patients versus unused donor controls revealed heightened PA expression of GM-CSF co-distributing with increased TNF and expanded populations of hematopoietic and endothelial GM-CSF receptor alpha (GM-CSFRalpha)-positive cells. Moreover, a 3-wk infusion of GM-CSF in mice increased hypoxia-induced PAH, in association with increased perivascular macrophages and muscularized distal arteries, whereas blockade of GM-CSF repressed these features. Thus, reduced BMPR2 can subvert a stress granule response, heighten GM-CSF mRNA translation, increase inflammatory cell recruitment, and exacerbate PAH.
PMCID:3920564
PMID: 24446489
ISSN: 0022-1007
CID: 901122

High-density lipoproteins put out the fire

Moore, Kathryn J; Fisher, Edward A
Macrophages in atherosclerotic plaques are activated, inflammatory cells that directly contribute to the disease process. De Nardo et al. (2013), now report that high-density lipoproteins (HDL) can reprogram macrophages to be less inflammatory through an ATF3-dependent pathway, providing another mechanistic basis for the atheroprotective properties of HDL.
PMCID:3962668
PMID: 24506861
ISSN: 1550-4131
CID: 806952

A consecutive case series experience with [18 F] florbetapir PET imaging in an urban dementia center: impact on quality of life, decision making, and disposition

Mitsis, Effie M; Bender, Heidi A; Kostakoglu, Lale; Machac, Josef; Martin, Jane; Woehr, Jennifer L; Sewell, Margaret C; Aloysi, Amy; Goldstein, Martin A; Li, Clara; Sano, Mary; Gandy, Sam
BACKGROUND: Identification and quantification of fibrillar amyloid in brain using positron emission tomography (PET) imaging and Amyvid ([18 F] Amyvid, [18 F] florbetapir, 18 F-AV-45) was recently approved by the US Food and Drug Administration as a clinical tool to estimate brain amyloid burden in patients being evaluated for cognitive impairment or dementia. Imaging with [18 F] florbetapir offers in vivo confirmation of the presence of cerebral amyloidosis and may increase the accuracy of the diagnosis and likely cause of cognitive impairment (CI) or dementia. Most importantly, amyloid imaging may improve certainty of etiology in situations where the differential diagnosis cannot be resolved on the basis of standard clinical and laboratory criteria. RESULTS: A consecutive case series of 30 patients (age 50-89; 16 M/14 F) were clinically evaluated at a cognitive evaluation center of urban dementia center and referred for [18 F] florbetapir PET imaging as part of a comprehensive dementia workup. Evaluation included neurological examination and neuropsychological assessment by dementia experts. [18 F] florbetapir PET scans were read by trained nuclear medicine physicians using the qualitative binary approach. Scans were rated as either positive or negative for the presence of cerebral amyloidosis. In addition to a comprehensive dementia evaluation, post [18 F] florbetapir PET imaging results caused diagnoses to be changed in 10 patients and clarified in 9 patients. Four patients presenting with SCI were negative for amyloidosis. These results show that [18 F] florbetapir PET imaging added diagnostic clarification and discrimination in over half of the patients evaluated. CONCLUSIONS: Amyloid imaging provided novel and essential data that: (1) caused diagnosis to be revised; and/or (2) prevented the initiation of incorrect or suboptimal treatment; and/or (3) avoided inappropriate referral to an anti-amyloid clinical trial.
PMCID:3913628
PMID: 24484858
ISSN: 1750-1326
CID: 832732

Male-specific fruitless isoforms target neurodevelopmental genes to specify a sexually dimorphic nervous system

Neville, Megan C; Nojima, Tetsuya; Ashley, Elizabeth; Parker, Darren J; Walker, John; Southall, Tony; Van de Sande, Bram; Marques, Ana C; Fischer, Bettina; Brand, Andrea H; Russell, Steven; Ritchie, Michael G; Aerts, Stein; Goodwin, Stephen F
BACKGROUND:In Drosophila, male courtship behavior is regulated in large part by the gene fruitless (fru). fru encodes a set of putative transcription factors that promote male sexual behavior by controlling the development of sexually dimorphic neuronal circuitry. Little is known about how Fru proteins function at the level of transcriptional regulation or the role that isoform diversity plays in the formation of a male-specific nervous system. RESULTS:To characterize the roles of sex-specific Fru isoforms in specifying male behavior, we generated novel isoform-specific mutants and used a genomic approach to identify direct Fru isoform targets during development. We demonstrate that all Fru isoforms directly target genes involved in the development of the nervous system, with individual isoforms exhibiting unique binding specificities. We observe that fru behavioral phenotypes are specified by either a single isoform or a combination of isoforms. Finally, we illustrate the utility of these data for the identification of novel sexually dimorphic genomic enhancers and novel downstream regulators of male sexual behavior. CONCLUSIONS:These findings suggest that Fru isoform diversity facilitates both redundancy and specificity in gene expression, and that the regulation of neuronal developmental genes may be the most ancient and conserved role of fru in the specification of a male-specific nervous system.
PMCID:3969260
PMID: 24440396
ISSN: 1879-0445
CID: 5193212

Membrane transport piece by piece: production of transmembrane peptides for structural and functional studies

Kemp, Grant; Fliegel, Larry; Young, Howard S
Membrane proteins are involved in all cellular processes from signaling cascades to nutrient uptake and waste disposal. Because of these essential functions, many membrane proteins are recognized as important, yet elusive, clinical targets. Recent advances in structural biology have answered many questions about how membrane proteins function, yet one of the major bottlenecks remains the ability to obtain sufficient quantities of pure and homogeneous protein. This is particularly true for human membrane proteins, where novel expression strategies and structural techniques are needed to better characterize their function and therapeutic potential. One way to approach this challenge is to determine the structure of smaller pieces of membrane proteins that can be assembled into models of the complete protein. This unit describes the rationale for working with single or multiple transmembrane segments and provides a description of strategies and methods to express and purify them for structural and functional studies using a maltose binding protein (MBP) fusion. The bulk of the unit outlines a detailed methodology and justification for producing these peptides under native-like conditions.
PMID: 24510677
ISSN: 1934-3663
CID: 2444492

Sweat gland progenitors in development, homeostasis, and wound repair

Lu, Catherine; Fuchs, Elaine
The human body is covered with several million sweat glands. These tiny coiled tubular skin appendages produce the sweat that is our primary source of cooling and hydration of the skin. Numerous studies have been published on their morphology and physiology. Until recently, however, little was known about how glandular skin maintains homeostasis and repairs itself after tissue injury. Here, we provide a brief overview of sweat gland biology, including newly identified reservoirs of stem cells in glandular skin and their activation in response to different types of injuries. Finally, we discuss how the genetics and biology of glandular skin has advanced our knowledge of human disorders associated with altered sweat gland activity.
PMCID:3904096
PMID: 24492848
ISSN: 2157-1422
CID: 3131652

E2 enzyme inhibition by stabilization of a low-affinity interface with ubiquitin

Huang, Hao; Ceccarelli, Derek F; Orlicky, Stephen; St-Cyr, Daniel J; Ziemba, Amy; Garg, Pankaj; Plamondon, Serge; Auer, Manfred; Sidhu, Sachdev; Marinier, Anne; Kleiger, Gary; Tyers, Mike; Sicheri, Frank
Weak protein interactions between ubiquitin and the ubiquitin-proteasome system (UPS) enzymes that mediate its covalent attachment to substrates serve to position ubiquitin for optimal catalytic transfer. We show that a small-molecule inhibitor of the E2 ubiquitin-conjugating enzyme Cdc34A, called CC0651, acts by trapping a weak interaction between ubiquitin and the E2 donor ubiquitin-binding site. A structure of the ternary CC0651-Cdc34A-ubiquitin complex reveals that the inhibitor engages a composite binding pocket formed from Cdc34A and ubiquitin. CC0651 also suppresses the spontaneous hydrolysis rate of the Cdc34A-ubiquitin thioester without decreasing the interaction between Cdc34A and the RING domain subunit of the E3 enzyme. Stabilization of the numerous other weak interactions between ubiquitin and UPS enzymes by small molecules may be a feasible strategy to selectively inhibit different UPS activities.
PMCID:3905752
PMID: 24316736
ISSN: 1552-4469
CID: 2446562

Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains

Remis, Jonathan P; Wei, Dongguang; Gorur, Amita; Zemla, Marcin; Haraga, Jessica; Allen, Simon; Witkowska, H Ewa; Costerton, J William; Berleman, James E; Auer, Manfred
The social soil bacterium, Myxococcus xanthus, displays a variety of complex and highly coordinated behaviours, including social motility, predatory rippling and fruiting body formation. Here we show that M. xanthus cells produce a network of outer membrane extensions in the form of outer membrane vesicle chains and membrane tubes that interconnect cells. We observed peritrichous display of vesicles and vesicle chains, and increased abundance in biofilms compared with planktonic cultures. By applying a range of imaging techniques, including three-dimensional (3D) focused ion beam scanning electron microscopy, we determined these structures to range between 30 and 60 nm in width and up to 5 mum in length. Purified vesicle chains consist of typical M. xanthus lipids, fucose, mannose, N-acetylglucosamine and N-acetylgalactoseamine carbohydrates and a small set of cargo protein. The protein content includes CglB and Tgl outer membrane proteins known to be transferable between cells in a contact-dependent manner. Most significantly, the 3D organization of cells within biofilms indicates that cells are connected via an extensive network of membrane extensions that may connect cells at the level of the periplasmic space. Such a network would allow the transfer of membrane proteins and other molecules between cells, and therefore could provide a mechanism for the coordination of social activities.
PMCID:4234120
PMID: 23848955
ISSN: 1462-2920
CID: 2446552

An abundant dysfunctional apolipoprotein A1 in human atheroma

Huang, Ying; Didonato, Joseph A; Levison, Bruce S; Schmitt, Dave; Li, Lin; Wu, Yuping; Buffa, Jennifer; Kim, Timothy; Gerstenecker, Gary S; Gu, Xiaodong; Kadiyala, Chandra S; Wang, Zeneng; Culley, Miranda K; Hazen, Jennie E; Didonato, Anthony J; Fu, Xiaoming; Berisha, Stela Z; Peng, Daoquan; Nguyen, Truc T; Liang, Shaohong; Chuang, Chia-Chi; Cho, Leslie; Plow, Edward F; Fox, Paul L; Gogonea, Valentin; Tang, W H Wilson; Parks, John S; Fisher, Edward A; Smith, Jonathan D; Hazen, Stanley L
Recent studies have indicated that high-density lipoproteins (HDLs) and their major structural protein, apolipoprotein A1 (apoA1), recovered from human atheroma are dysfunctional and are extensively oxidized by myeloperoxidase (MPO). In vitro oxidation of either apoA1 or HDL particles by MPO impairs their cholesterol acceptor function. Here, using phage display affinity maturation, we developed a high-affinity monoclonal antibody that specifically recognizes both apoA1 and HDL that have been modified by the MPO-H2O2-Cl(-) system. An oxindolyl alanine (2-OH-Trp) moiety at Trp72 of apoA1 is the immunogenic epitope. Mutagenesis studies confirmed a critical role for apoA1 Trp72 in MPO-mediated inhibition of the ATP-binding cassette transporter A1 (ABCA1)-dependent cholesterol acceptor activity of apoA1 in vitro and in vivo. ApoA1 containing a 2-OH-Trp72 group (oxTrp72-apoA1) is in low abundance within the circulation but accounts for 20% of the apoA1 in atherosclerosis-laden arteries. OxTrp72-apoA1 recovered from human atheroma or plasma is lipid poor, virtually devoid of cholesterol acceptor activity and demonstrated both a potent proinflammatory activity on endothelial cells and an impaired HDL biogenesis activity in vivo. Elevated oxTrp72-apoA1 levels in subjects presenting to a cardiology clinic (n = 627) were associated with increased cardiovascular disease risk. Circulating oxTrp72-apoA1 levels may serve as a way to monitor a proatherogenic process in the artery wall.
PMCID:3923163
PMID: 24464187
ISSN: 1078-8956
CID: 806892