Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14178


Dedifferentiation of neurons precedes tumor formation in Lola mutants

Southall, Tony D; Davidson, Catherine M; Miller, Claire; Carr, Adrian; Brand, Andrea H
The ability to reprogram differentiated cells into a pluripotent state has revealed that the differentiated state is plastic and reversible. It is evident, therefore, that mechanisms must be in place to maintain cells in a differentiated state. Transcription factors that specify neuronal characteristics have been well studied, but less is known about the mechanisms that prevent neurons from dedifferentiating to a multipotent, stem cell-like state. Here, we identify Lola as a transcription factor that is required to maintain neurons in a differentiated state. We show that Lola represses neural stem cell genes and cell-cycle genes in postmitotic neurons. In lola mutants, neurons dedifferentiate, turn on neural stem cell genes, and begin to divide, forming tumors. Thus, neurons rather than stem cells or intermediate progenitors are the tumor-initiating cells in lola mutants.
PMCID:3978655
PMID: 24631403
ISSN: 1878-1551
CID: 5193232

Functionally distinct PI 3-kinase pathways regulate myelination in the peripheral nervous system

Heller, Bradley A; Ghidinelli, Monica; Voelkl, Jakob; Einheber, Steven; Smith, Ryan; Grund, Ethan; Morahan, Grant; Chandler, David; Kalaydjieva, Luba; Giancotti, Filippo; King, Rosalind H; Fejes-Toth, Aniko Naray; Fejes-Toth, Gerard; Feltri, Maria Laura; Lang, Florian; Salzer, James L
The PI 3-kinase (PI 3-K) signaling pathway is essential for Schwann cell myelination. Here we have characterized PI 3-K effectors activated during myelination by probing myelinating cultures and developing nerves with an antibody that recognizes phosphorylated substrates for this pathway. We identified a discrete number of phospho-proteins including the S6 ribosomal protein (S6rp), which is down-regulated at the onset of myelination, and N-myc downstream-regulated gene-1 (NDRG1), which is up-regulated strikingly with myelination. We show that type III Neuregulin1 on the axon is the primary activator of S6rp, an effector of mTORC1. In contrast, laminin-2 in the extracellular matrix (ECM), signaling through the alpha6beta4 integrin and Sgk1 (serum and glucocorticoid-induced kinase 1), drives phosphorylation of NDRG1 in the Cajal bands of the abaxonal compartment. Unexpectedly, mice deficient in alpha6beta4 integrin signaling or Sgk1 exhibit hypermyelination during development. These results identify functionally and spatially distinct PI 3-K pathways: an early, pro-myelinating pathway driven by axonal Neuregulin1 and a later-acting, laminin-integrin-dependent pathway that negatively regulates myelination.
PMCID:3971744
PMID: 24687281
ISSN: 0021-9525
CID: 867262

Global Reprogramming of the Cellular Translational Landscape Facilitates Cytomegalovirus Replication

McKinney, Caleb; Zavadil, Jiri; Bianco, Christopher; Shiflett, Lora; Brown, Stuart; Mohr, Ian
PMID: 28898682
ISSN: 2211-1247
CID: 2953632

Small molecule probes to quantify the functional fraction of a specific protein in a cell with minimal folding equilibrium shifts

Liu, Yu; Tan, Yun Lei; Zhang, Xin; Bhabha, Gira; Ekiert, Damian C; Genereux, Joseph C; Cho, Younhee; Kipnis, Yakov; Bjelic, Sinisa; Baker, David; Kelly, Jeffery W
Although much is known about protein folding in buffers, it remains unclear how the cellular protein homeostasis network functions as a system to partition client proteins between folded and functional, soluble and misfolded, and aggregated conformations. Herein, we develop small molecule folding probes that specifically react with the folded and functional fraction of the protein of interest, enabling fluorescence-based quantification of this fraction in cell lysate at a time point of interest. Importantly, these probes minimally perturb a protein's folding equilibria within cells during and after cell lysis, because sufficient cellular chaperone/chaperonin holdase activity is created by rapid ATP depletion during cell lysis. The folding probe strategy and the faithful quantification of a particular protein's functional fraction are exemplified with retroaldolase, a de novo designed enzyme, and transthyretin, a nonenzyme protein. Our findings challenge the often invoked assumption that the soluble fraction of a client protein is fully folded in the cell. Moreover, our results reveal that the partitioning of destabilized retroaldolase and transthyretin mutants between the aforementioned conformational states is strongly influenced by cytosolic proteostasis network perturbations. Overall, our results suggest that applying a chemical folding probe strategy to other client proteins offers opportunities to reveal how the proteostasis network functions as a system to regulate the folding and function of individual client proteins in vivo.
PMCID:3970509
PMID: 24591605
ISSN: 1091-6490
CID: 2291292

The Xenopus alcohol dehydrogenase gene family: characterization and comparative analysis incorporating amphibian and reptilian genomes

Borràs, Emma; Albalat, Ricard; Duester, Gregg; Parés, Xavier; Farrés, Jaume
BACKGROUND:The alcohol dehydrogenase (ADH) gene family uniquely illustrates the concept of enzymogenesis. In vertebrates, tandem duplications gave rise to a multiplicity of forms that have been classified in eight enzyme classes, according to primary structure and function. Some of these classes appear to be exclusive of particular organisms, such as the frog ADH8, a unique NADP+-dependent ADH enzyme. This work describes the ADH system of Xenopus, as a model organism, and explores the first amphibian and reptilian genomes released in order to contribute towards a better knowledge of the vertebrate ADH gene family. RESULTS:Xenopus cDNA and genomic sequences along with expressed sequence tags (ESTs) were used in phylogenetic analyses and structure-function correlations of amphibian ADHs. Novel ADH sequences identified in the genomes of Anolis carolinensis (anole lizard) and Pelodiscus sinensis (turtle) were also included in these studies. Tissue and stage-specific libraries provided expression data, which has been supported by mRNA detection in Xenopus laevis tissues and regulatory elements in promoter regions. Exon-intron boundaries, position and orientation of ADH genes were deduced from the amphibian and reptilian genome assemblies, thus revealing syntenic regions and gene rearrangements with respect to the human genome. Our results reveal the high complexity of the ADH system in amphibians, with eleven genes, coding for seven enzyme classes in Xenopus tropicalis. Frogs possess the amphibian-specific ADH8 and the novel ADH1-derived forms ADH9 and ADH10. In addition, they exhibit ADH1, ADH2, ADH3 and ADH7, also present in reptiles and birds. Class-specific signatures have been assigned to ADH7, and ancestral ADH2 is predicted to be a mixed-class as the ostrich enzyme, structurally close to mammalian ADH2 but with class-I kinetic properties. Remarkably, many ADH1 and ADH7 forms are observed in the lizard, probably due to lineage-specific duplications. ADH4 is not present in amphibians and reptiles. CONCLUSIONS:The study of the ancient forms of ADH2 and ADH7 sheds new light on the evolution of the vertebrate ADH system, whereas the special features showed by the novel forms point to the acquisition of new functions following the ADH gene family expansion which occurred in amphibians.
PMCID:4028059
PMID: 24649825
ISSN: 1471-2164
CID: 2912632

Four-dimensional live imaging of apical biosynthetic trafficking reveals a post-Golgi sorting role of apical endosomal intermediates

Thuenauer, Roland; Hsu, Ya-Chu; Carvajal-Gonzalez, Jose Maria; Deborde, Sylvie; Chuang, Jen-Zen; Romer, Winfried; Sonnleitner, Alois; Rodriguez-Boulan, Enrique; Sung, Ching-Hwa
Emerging data suggest that in polarized epithelial cells newly synthesized apical and basolateral plasma membrane proteins traffic through different endosomal compartments en route to the respective cell surface. However, direct evidence for trans-endosomal pathways of plasma membrane proteins is still missing and the mechanisms involved are poorly understood. Here, we imaged the entire biosynthetic route of rhodopsin-GFP, an apical marker in epithelial cells, synchronized through recombinant conditional aggregation domains, in live Madin-Darby canine kidney cells using spinning disk confocal microscopy. Our experiments directly demonstrate that rhodopsin-GFP traffics through apical recycling endosomes (AREs) that bear the small GTPase Rab11a before arriving at the apical membrane. Expression of dominant-negative Rab11a drastically reduced apical delivery of rhodopsin-GFP and caused its missorting to the basolateral membrane. Surprisingly, functional inhibition of dynamin-2 trapped rhodopsin-GFP at AREs and caused aberrant accumulation of coated vesicles on AREs, suggesting a previously unrecognized role for dynamin-2 in the scission of apical carrier vesicles from AREs. A second set of experiments, using a unique method to carry out total internal reflection fluorescence microscopy (TIRFM) from the apical side, allowed us to visualize the fusion of rhodopsin-GFP carrier vesicles, which occurred randomly all over the apical plasma membrane. Furthermore, two-color TIRFM showed that Rab11a-mCherry was present in rhodopsin-GFP carrier vesicles and was rapidly released upon fusion onset. Our results provide direct evidence for a role of AREs as a post-Golgi sorting hub in the biosynthetic route of polarized epithelia, with Rab11a regulating cargo sorting at AREs and carrier vesicle docking at the apical membrane.
PMCID:3964106
PMID: 24591614
ISSN: 1091-6490
CID: 2145622

Protein kinase C isoforms in atherosclerosis: pro- or anti-inflammatory?

Fan, Hueng-Chuen; Fernandez-Hernando, Carlos; Lai, Jenn-Haung
Atherosclerosis is a pathologic condition caused by chronic inflammation in response to lipid deposition in the arterial wall. There are many known contributing factors such as long-term abnormal glucose levels, smoking, hypertension, and hyperlipidemia. Under the influence of such factors, immune and non-immune effectors cells are activated and participate during the progression of atherosclerosis. Protein kinase C (PKC) family isoforms are key players in the signal transduction pathways of cellular activation and have been associated with several aspects of the atherosclerotic vascular disease. This review article summarizes the current knowledge of PKC isoforms functions during atherogenesis, and addresses differential roles and disputable observations of PKC isoforms. Among PKC isoforms, both PKCbeta and PKCdelta are the most attractive and potential therapeutic targets. This commentary discusses in detail the outcomes and current status of clinical trials on PKCbeta and PKCdelta inhibitors in atherosclerosis-associated disorders like diabetes and myocardial infarction. The risk and benefit of these inhibitors for clinical purposes will be also discussed. This review summarizes what is already being done and what else needs to be done in further targeting PKC isoforms, especially PKCbeta and PKCdelta, for therapy of atherosclerosis and atherosclerosis-associated vasculopathies in the future.
PMID: 24440741
ISSN: 0006-2952
CID: 979202

Single-molecule dynamics of enhanceosome assembly in embryonic stem cells

Chen, Jiji; Zhang, Zhengjian; Li, Li; Chen, Bi-Chang; Revyakin, Andrey; Hajj, Bassam; Legant, Wesley; Dahan, Maxime; Lionnet, Timothee; Betzig, Eric; Tjian, Robert; Liu, Zhe
Enhancer-binding pluripotency regulators (Sox2 and Oct4) play a seminal role in embryonic stem (ES) cell-specific gene regulation. Here, we combine in vivo and in vitro single-molecule imaging, transcription factor (TF) mutagenesis, and ChIP-exo mapping to determine how TFs dynamically search for and assemble on their cognate DNA target sites. We find that enhanceosome assembly is hierarchically ordered with kinetically favored Sox2 engaging the target DNA first, followed by assisted binding of Oct4. Sox2/Oct4 follow a trial-and-error sampling mechanism involving 84-97 events of 3D diffusion (3.3-3.7 s) interspersed with brief nonspecific collisions (0.75-0.9 s) before acquiring and dwelling at specific target DNA (12.0-14.6 s). Sox2 employs a 3D diffusion-dominated search mode facilitated by 1D sliding along open DNA to efficiently locate targets. Our findings also reveal fundamental aspects of gene and developmental regulation by fine-tuning TF dynamics and influence of the epigenome on target search parameters.
PMCID:4040518
PMID: 24630727
ISSN: 1097-4172
CID: 2385222

Missense mutations in plakophilin-2 cause sodium current deficit and associate with a brugada syndrome phenotype

Cerrone, Marina; Lin, Xianming; Zhang, Mingliang; Agullo-Pascual, Esperanza; Pfenniger, Anna; Chkourko Gusky, Halina; Novelli, Valeria; Kim, Changsung; Tirasawadichai, Tiara; Judge, Daniel P; Rothenberg, Eli; Chen, Huei-Sheng Vincent; Napolitano, Carlo; Priori, Silvia G; Delmar, Mario
BACKGROUND: Brugada syndrome (BrS) primarily associates with the loss of sodium channel function. Previous studies showed features consistent with sodium current (INa) deficit in patients carrying desmosomal mutations, diagnosed with arrhythmogenic cardiomyopathy (or arrhythmogenic right ventricular cardiomyopathy). Experimental models showed correlation between the loss of expression of desmosomal protein plakophilin-2 (PKP2) and reduced INa. We hypothesized that PKP2 variants that reduce INa could yield a BrS phenotype, even without overt structural features characteristic of arrhythmogenic right ventricular cardiomyopathy. METHODS AND RESULTS: We searched for PKP2 variants in the genomic DNA of 200 patients with a BrS diagnosis, no signs of arrhythmogenic cardiomyopathy, and no mutations in BrS-related genes SCN5A, CACNa1c, GPD1L, and MOG1. We identified 5 cases of single amino acid substitutions. Mutations were tested in HL-1-derived cells endogenously expressing NaV1.5 but made deficient in PKP2 (PKP2-KD). Loss of PKP2 caused decreased INa and NaV1.5 at the site of cell contact. These deficits were restored by the transfection of wild-type PKP2, but not of BrS-related PKP2 mutants. Human induced pluripotent stem cell cardiomyocytes from a patient with a PKP2 deficit showed drastically reduced INa. The deficit was restored by transfection of wild type, but not BrS-related PKP2. Super-resolution microscopy in murine PKP2-deficient cardiomyocytes related INa deficiency to the reduced number of channels at the intercalated disc and increased separation of microtubules from the cell end. CONCLUSIONS: This is the first systematic retrospective analysis of a patient group to define the coexistence of sodium channelopathy and genetic PKP2 variations. PKP2 mutations may be a molecular substrate leading to the diagnosis of BrS.
PMCID:3954430
PMID: 24352520
ISSN: 0009-7322
CID: 836072

Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse

Choudhuri, Kaushik; Llodra, Jaime; Roth, Eric W; Tsai, Jones; Gordo, Susana; Wucherpfennig, Kai W; Kam, Lance C; Stokes, David L; Dustin, Michael L
The recognition events that mediate adaptive cellular immunity and regulate antibody responses depend on intercellular contacts between T cells and antigen-presenting cells (APCs). T-cell signalling is initiated at these contacts when surface-expressed T-cell receptors (TCRs) recognize peptide fragments (antigens) of pathogens bound to major histocompatibility complex molecules (pMHC) on APCs. This, along with engagement of adhesion receptors, leads to the formation of a specialized junction between T cells and APCs, known as the immunological synapse, which mediates efficient delivery of effector molecules and intercellular signals across the synaptic cleft. T-cell recognition of pMHC and the adhesion ligand intercellular adhesion molecule-1 (ICAM-1) on supported planar bilayers recapitulates the domain organization of the immunological synapse, which is characterized by central accumulation of TCRs, adjacent to a secretory domain, both surrounded by an adhesive ring. Although accumulation of TCRs at the immunological synapse centre correlates with T-cell function, this domain is itself largely devoid of TCR signalling activity, and is characterized by an unexplained immobilization of TCR-pMHC complexes relative to the highly dynamic immunological synapse periphery. Here we show that centrally accumulated TCRs are located on the surface of extracellular microvesicles that bud at the immunological synapse centre. Tumour susceptibility gene 101 (TSG101) sorts TCRs for inclusion in microvesicles, whereas vacuolar protein sorting 4 (VPS4) mediates scission of microvesicles from the T-cell plasma membrane. The human immunodeficiency virus polyprotein Gag co-opts this process for budding of virus-like particles. B cells bearing cognate pMHC receive TCRs from T cells and initiate intracellular signals in response to isolated synaptic microvesicles. We conclude that the immunological synapse orchestrates TCR sorting and release in extracellular microvesicles. These microvesicles deliver transcellular signals across antigen-dependent synapses by engaging cognate pMHC on APCs.
PMCID:3949170
PMID: 24487619
ISSN: 0028-0836
CID: 820872