Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14178


Allergic Contact Dermatitis to Gamma-Irradiated WEBCOL Alcohol Prep Pads

Firoz, Elnaz F; Turnbull, Rowena K; Loomis, Cynthia A; Brownell, Isaac
We report a case of allergic contact dermatitis to WEBCOL((R)) alcohol prep pads in a healthy 17-year-old girl who showed no reaction to the individual components of the prep pads upon provocative use testing. Although several case reports have described allergic contact dermatitis to isopropyl alcohol, there have been no reports of allergic contact dermatitis to alcohol prep pads sterilized with gamma irradiation, a common sterilization technique capable of producing volatile products in this type of alcohol prep pad.
PMID: 22471753
ISSN: 0736-8046
CID: 665962

Titration of GLI3 repressor activity by sonic hedgehog signaling is critical for maintaining multiple adult neural stem cell and astrocyte functions

Petrova, Ralitsa; Garcia, A Denise R; Joyner, Alexandra L
Sonic hedgehog (SHH), a key regulator of embryonic neurogenesis, signals directly to neural stem cells (NSCs) in the subventricular zone (SVZ) and to astrocytes in the adult mouse forebrain. The specific mechanism by which the GLI2 and GLI3 transcriptional activators (GLI2(A) and GLI3(A)) and repressors (GLI2(R) and GLI3(R)) carry out SHH signaling has not been addressed. We found that the majority of slow-cycling NSCs express Gli2 and Gli3, whereas Gli1 is restricted ventrally and all three genes are downregulated when NSCs transition into proliferating progenitors. Surprisingly, whereas conditional ablation of Smo in postnatal glial fibrillary acidic protein-expressing cells results in cell-autonomous loss of NSCs and a progressive reduction in SVZ proliferation, without an increase in glial cell production, removal of Gli2 or Gli3 does not alter adult SVZ neurogenesis. Significantly, removing Gli3 in Smo conditional mutants largely rescues neurogenesis and, conversely, expression of a constitutive GLI3(R) in the absence of normal Gli2 and Gli3 abrogates neurogenesis. Thus unattenuated GLI3(R) is a primary inhibitor of adult SVZ NSC function. Ablation of Gli2 and Gli3 revealed a minor role for GLI2(R) and little requirement for GLI(A) function in stimulating SVZ neurogenesis. Moreover, we found that similar rules of GLI activity apply to SHH signaling in regulating SVZ-derived olfactory bulb interneurons and maintaining cortical astrocyte function. Namely, fewer superficial olfactory bulb interneurons are generated in the absence of Gli2 and Gli3, whereas astrocyte partial gliosis results from an increase in GLI3(R). Thus precise titration of GLI(R) levels by SHH is critical to multiple functions of adult NSCs and astrocytes.
PMCID:3812512
PMID: 24174682
ISSN: 0270-6474
CID: 967362

Generation and Dynamics of an Endogenous, Self-Generated Signaling Gradient across a Migrating Tissue

Venkiteswaran, Gayatri; Lewellis, Stephen W; Wang, John; Reynolds, Eric; Nicholson, Charles; Knaut, Holger
In animals, many cells reach their destinations by migrating toward higher concentrations of an attractant. However, the nature, generation, and interpretation of attractant gradients are poorly understood. Using a GFP fusion and a signaling sensor, we analyzed the distribution of the attractant chemokine Sdf1 during migration of the zebrafish posterior lateral line primordium, a cohort of about 200 cells that migrates over a stripe of cells uniformly expressing sdf1. We find that a small fraction of the total Sdf1 pool is available to signal and induces a linear Sdf1-signaling gradient across the primordium. This signaling gradient is initiated at the rear of the primordium, equilibrates across the primordium within 200 min, and operates near steady state. The rear of the primordium generates this gradient through continuous sequestration of Sdf1 protein by the alternate Sdf1-receptor Cxcr7. Modeling shows that this is a physically plausible scenario.
PMCID:3842034
PMID: 24119842
ISSN: 0092-8674
CID: 626792

Cellular response to micropatterned growth promoting and inhibitory substrates

Belkaid, Wiam; Thostrup, Peter; Yam, Patricia T; Juzwik, Camille A; Ruthazer, Edward S; Dhaunchak, Ajit S; Colman, David R
BACKGROUND: Normal development and the response to injury both require cell growth, migration and morphological remodeling, guided by a complex local landscape of permissive and inhibitory cues. A standard approach for studying by such cues is to culture cells on uniform substrates containing known concentrations of these molecules, however this method fails to represent the molecular complexity of the natural growth environment. RESULTS: To mimic the local complexity of environmental conditions in vitro, we used a contact micropatterning technique to examine cell growth and differentiation on patterned substrates printed with the commonly studied growth permissive and inhibitory substrates, poly-L-lysine (PLL) and myelin, respectively. We show that micropatterning of PLL can be used to direct adherence and axonal outgrowth of hippocampal and cortical neurons as well as other cells with diverse morphologies like Oli-neu oligodendrocyte progenitor cell lines and fibroblast-like COS7 cells in culture. Surprisingly, COS7 cells exhibited a preference for low concentration (1 pg/mL) PLL zones over adjacent zones printed with high concentrations (1 mg/mL). We demonstrate that micropatterning is also useful for studying factors that inhibit growth as it can direct cells to grow along straight lines that are easy to quantify. Furthermore, we provide the first demonstration of microcontact printing of myelin-associated proteins and show that they impair process outgrowth from Oli-neu oligodendrocyte precursor cells. CONCLUSION: We conclude that microcontact printing is an efficient and reproducible method for patterning proteins and brain-derived myelin on glass surfaces in order to study the effects of the microenvironment on cell growth and morphogenesis.
PMCID:3819464
PMID: 24119185
ISSN: 1472-6750
CID: 605552

Structural Mimicry of A-Loop Tyrosine Phosphorylation by a Pathogenic FGF Receptor 3 Mutation

Huang, Zhifeng; Chen, Huaibin; Blais, Steven; Neubert, Thomas A; Li, Xiaokun; Mohammadi, Moosa
The K650E gain-of-function mutation in the tyrosine kinase domain of FGF receptor 3 (FGFR3) causes Thanatophoric Dysplasia type II, a neonatal lethal congenital dwarfism syndrome, and when acquired somatically, it contributes to carcinogenesis. In this report, we determine the crystal structure of the FGFR3 kinase domain harboring this pathogenic mutation and show that the mutation introduces a network of intramolecular hydrogen bonds to stabilize the active-state conformation. In the crystal, the mutant FGFR3 kinases are caught in the act of trans-phosphorylation on a kinase insert autophosphorylation site, emphasizing the fact that the K650E mutation circumvents the requirement for A-loop tyrosine phosphorylation in kinase activation. Analysis of this trans-phosphorylation complex sheds light onto the determinants of tyrosine trans-phosphorylation specificity. We propose that the targeted inhibition of this pathogenic FGFR3 kinase may be achievable by small molecule kinase inhibitors that selectively bind the active-state conformation of FGFR3 kinase.
PMCID:3839590
PMID: 23972473
ISSN: 0969-2126
CID: 573812

Function and distribution of apolipoprotein A1 in the artery wall are markedly distinct from those in plasma

DiDonato, Joseph A; Huang, Ying; Aulak, Kulwant S; Even-Or, Orli; Gerstenecker, Gary; Gogonea, Valentin; Wu, Yuping; Fox, Paul L; Tang, W H Wilson; Plow, Edward F; Smith, Jonathan D; Fisher, Edward A; Hazen, Stanley L
BACKGROUND: Prior studies show that apolipoprotein A1 (apoA1) recovered from human atherosclerotic lesions is highly oxidized. Ex vivo oxidation of apoA1 or high-density lipoprotein (HDL) cross-links apoA1 and impairs lipid binding, cholesterol efflux, and lecithin-cholesterol acyltransferase activities of the lipoprotein. Remarkably, no studies to date directly quantify either the function or HDL particle distribution of apoA1 recovered from the human artery wall. METHODS AND RESULTS: A monoclonal antibody (10G1.5) was developed that equally recognizes lipid-free and HDL-associated apoA1 in both native and oxidized forms. Examination of homogenates of atherosclerotic plaque-laden aorta showed >100-fold enrichment of apoA1 compared with normal aorta (P<0.001). Surprisingly, buoyant density fractionation revealed that only a minority (<3% of total) of apoA1 recovered from either lesions or normal aorta resides within an HDL-like particle (1.06390%) of apoA1 within aortic tissue (normal and lesions) was recovered within the lipoprotein-depleted fraction (d>1.21). Moreover, both lesion and normal artery wall apoA1 are highly cross-linked (50% to 70% of total), and functional characterization of apoA1 quantitatively recovered from aorta with the use of monoclonal antibody 10G1.5 showed approximately 80% lower cholesterol efflux activity and approximately 90% lower lecithin-cholesterol acyltransferase activity relative to circulating apoA1. CONCLUSIONS: The function and distribution of apoA1 in human aorta are quite distinct from those found in plasma. The lipoprotein is markedly enriched within atherosclerotic plaque, predominantly lipid-poor, not associated with HDL, extensively oxidatively cross-linked, and functionally impaired.
PMCID:3882895
PMID: 23969698
ISSN: 0009-7322
CID: 627362

Cole Disease Results from Mutations in ENPP1

Eytan, Ori; Morice-Picard, Fanny; Sarig, Ofer; Ezzedine, Khaled; Isakov, Ofer; Li, Qiaoli; Ishida-Yamamoto, Akemi; Shomron, Noam; Goldsmith, Tomer; Fuchs-Telem, Dana; Adir, Noam; Uitto, Jouni; Orlow, Seth J; Taieb, Alain; Sprecher, Eli
The coexistence of abnormal keratinization and aberrant pigmentation in a number of cornification disorders has long suggested a mechanistic link between these two processes. Here, we deciphered the genetic basis of Cole disease, a rare autosomal-dominant genodermatosis featuring punctate keratoderma, patchy hypopigmentation, and uncommonly, cutaneous calcifications. Using a combination of exome and direct sequencing, we showed complete cosegregation of the disease phenotype with three heterozygous ENPP1 mutations in three unrelated families. All mutations were found to affect cysteine residues in the somatomedin-B-like 2 (SMB2) domain in the encoded protein, which has been implicated in insulin signaling. ENPP1 encodes ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which is responsible for the generation of inorganic pyrophosphate, a natural inhibitor of mineralization. Previously, biallelic mutations in ENPP1 were shown to underlie a number of recessive conditions characterized by ectopic calcification, thus providing evidence of profound phenotypic heterogeneity in ENPP1-associated genetic diseases.
PMCID:3791268
PMID: 24075184
ISSN: 0002-9297
CID: 602862

Paclitaxel Enhances the Immunogenic Signature of Radiation [Meeting Abstract]

Golden, E. B. ; Demaria, S. ; Barcellos-Hoff, M. ; Formenti, S. C.
ISI:000324503602323
ISSN: 0360-3016
CID: 656642

Biologically Augmenting Radiation Therapy by Inhibiting TGF beta in NSCLC from Molecular to Microenvironment [Meeting Abstract]

Du, S. ; Pellicciotta, I. ; Barcellos-Hoff, M.
ISI:000324503600344
ISSN: 0360-3016
CID: 656672

Radiation Promotes a Dose-Response Induction of Immunogenic Cell Death [Meeting Abstract]

Golden, E. B. ; Demaria, S. ; Barcellos-Hoff, M. ; Formenti, S. C.
ISI:000324503602322
ISSN: 0360-3016
CID: 657472