Searched for: school:SOM
Department/Unit:Cell Biology
Efficacy of B cell depletion therapy for murine joint arthritis flare is associated with increased lymphatic flow
Li, Jie; Ju, Yawen; Bouta, Echoe M; Xing, Lianping; Wood, Ronald W; Kuzin, Igor; Bottaro, Andrea; Ritchlin, Christopher T; Schwarz, Edward M
OBJECTIVE: B cell depletion therapy ameliorates rheumatoid arthritis by mechanisms that are incompletely understood. Arthritis flare in tumor necrosis factor (TNF)-transgenic mice is associated with efferent lymph node (LN) "collapse," triggered by B cell translocation into lymphatic spaces and decreased lymphatic drainage. The aim of this study was to examine whether the efficacy of B cell depletion therapy is associated with restoration of lymphatic drainage due to removal of obstructing nodal B cells. METHODS: We used contrast-enhanced magnetic resonance imaging, indocyanine green near-infrared imaging, and intravital immunofluorescence imaging to longitudinally assess synovitis, lymphatic flow, and cell migration in lymphatic vessels in TNF-transgenic mice. We conducted tests to determine whether the efficacy of B cell depletion therapy is associated with restoration of lymphatic draining and cell egress from arthritic joints. RESULTS: Unlike active lymphatics to normal and prearthritic knees, afferent lymphatic vessels to collapsed LNs in inflamed knees do not pulse. Intravital immunofluorescence imaging demonstrated that CD11b+ monocyte/macrophages in lymphatic vessels afferent to expanding LNs travel at high velocity (mean+/-SD 186+/-37 mum/second), while these cells are stationary in lymphatic vessels afferent to collapsed popliteal LNs. B cell depletion therapy for arthritis flares in TNF-transgenic mice significantly decreased knee synovium volume (by 50% from the baseline level) and significantly increased lymphatic clearance compared with placebo (P<0.05). This increased lymphatic drainage restored macrophage egress from inflamed joints without recovery of the lymphatic pulse. CONCLUSION: These results support a novel mechanism in which B cell depletion therapy for joint arthritis flares lessens inflammation by increasing lymphatic drainage and subsequent migration of cells and cytokines from the synovial space.
PMCID:3535508
PMID: 23002006
ISSN: 0004-3591
CID: 945542
Compensatory proliferation and apoptosis-induced proliferation: a need for clarification
Mollereau, B; Perez-Garijo, A; Bergmann, A; Miura, M; Gerlitz, O; Ryoo, H D; Steller, H; Morata, G
PMCID:3524636
PMID: 22722336
ISSN: 1350-9047
CID: 206292
2012: the year in dementia
Gandy, Sam; Dekosky, Steven T
PMCID:4006941
PMID: 23237888
ISSN: 1474-4422
CID: 203942
Drosophila p53 isoforms differentially regulate apoptosis and apoptosis-induced proliferation
Dichtel-Danjoy, M-L; Ma, D; Dourlen, P; Chatelain, G; Napoletano, F; Robin, M; Corbet, M; Levet, C; Hafsi, H; Hainaut, P; Ryoo, H D; Bourdon, J-C; Mollereau, B
Irradiated or injured cells enter apoptosis, and in turn, promote proliferation of surrounding unaffected cells. In Drosophila, apoptotic cells have an active role in proliferation, where the caspase Dronc and p53 induce mitogen expression and growth in the surrounding tissues. The Drosophila p53 gene structure is conserved and encodes at least two protein isoforms: a full-length isoform (Dp53) and an N-terminally truncated isoform (DDeltaNp53). Historically, DDeltaNp53 was the first p53 isoform identified and was thought to be responsible for all p53 biological activities. It was shown that DDeltaNp53 induces apoptosis by inducing the expression of IAP antagonists, such as Reaper. Here we investigated the roles of Dp53 and DDeltaNp53 in apoptosis and apoptosis-induced proliferation. We found that both isoforms were capable of activating apoptosis, but that they each induced distinct IAP antagonists. Expression of DDeltaNp53 induced Wingless (Wg) expression and enhanced proliferation in both 'undead cells' and in 'genuine' apoptotic cells. In contrast to DDeltaNp53, Dp53 did not induce Wg expression in the absence of the endogenous p53 gene. Thus, we propose that DDeltaNp53 is the main isoform that regulates apoptosis-induced proliferation. Understanding the roles of Drosophila p53 isoforms in apoptosis and in apoptosis-induced proliferation may shed new light on the roles of p53 isoforms in humans, with important implications in cancer biology.
PMCID:3524635
PMID: 22898807
ISSN: 1350-9047
CID: 206302
Telomere shortening and DNA damage of embryonic stem cells induced by cigarette smoke
Huang, Junjiu; Okuka, Maja; Lu, Weisi; Tsibris, John C M; McLean, Mark P; Keefe, David L; Liu, Lin
Embryonic stem cells (ESCs) provide a valuable in vitro model for testing toxicity of chemicals and environmental contaminants including cigarette smoke. Mouse ESCs were acutely or chronically exposed to smoke components, cigarette smoke condensate (CSC), or cadmium, an abundant component of CSC, and then evaluated for their self-renewal, apoptosis, DNA damage and telomere function. Acute exposure of ESCs to high dose of CSC or cadmium increased DNA damage and apoptosis. Yet, ESCs exhibited a remarkable capacity to recover following absence of exposure. Chronic exposure of ESCs to low dose of CSC or cadmium resulted in shorter telomeres and DNA damage. Together, acute exposure of ESCs to CSC or cadmium causes immediate cell death and reduces pluripotency, while chronic exposure of ESCs to CSC or cadmium leads to DNA damage and telomere shortening. Notably, a sub-proportion of ESCs during passages is selected to resist to smoke-induced oxidative damage to telomeres.
PMID: 22824788
ISSN: 0890-6238
CID: 956522
Evaluation of caspofungin susceptibility testing by the new Vitek 2 AST-YS06 yeast card using a unique collection of FKS wild-type and hot spot mutant isolates, including the five most common candida species
Astvad, Karen M; Perlin, David S; Johansen, Helle K; Jensen, Rasmus H; Arendrup, Maiken C
FKS mutant isolates associated with breakthrough or failure cases are emerging in clinical settings. Discrimination of these from wild-type (wt) isolates in a routine laboratory setting is complicated. We evaluated the ability of caspofungin MIC determination using the new Vitek 2 AST-Y06 yeast susceptibility card to correctly identify the fks mutants from wt isolates and compared the performance to those of the CLSI and EUCAST reference methods. A collection of 98 Candida isolates, including 31 fks hot spot mutants, were included. Performance was evaluated using the FKS genotype as the "gold standard" and compared to those of the CLSI and EUCAST methodologies. The categorical agreement for Vitek 2 was 93.9%, compared to 88.4% for the CLSI method and 98.7% for the EUCAST method. Vitek 2 misclassified 19.4% (6/31) of the fks mutant isolates as susceptible, in contrast to <4% for each of the reference methods. The overall essential agreement between the CLSI method and Vitek 2 MICs was 92.6% (88/95) but was substantially lower for fks mutant isolates (78.6% [22/28]). Correct discrimination between susceptible and intermediate Candida glabrata isolates was not possible, as the revised species-specific susceptibility breakpoint was not included in the Vitek 2 detection range (MIC of =0.250 to >/=4 mg/liter). In conclusion, the Vitek 2 allowed correct categorization of all wt isolates as susceptible. However, despite an acceptable categorical agreement, it failed to reliably classify isolates harboring fks hot spot mutations as intermediate or resistant, which was in part due to the fact that the detection range did not span the susceptibility breakpoint for C. glabrata.
PMCID:3535959
PMID: 23089746
ISSN: 0066-4804
CID: 309612
Report of a novel OCA2 gene mutation and an investigation of OCA2 variants on melanoma risk in a familial melanoma pedigree
Hawkes, Jason E; Cassidy, Pamela B; Manga, Prashiela; Boissy, Raymond E; Goldgar, David; Cannon-Albright, Lisa; Florell, Scott R; Leachman, Sancy A
BACKGROUND: Oculocutaneous albinism type 2 (OCA2) is caused by mutations of the OCA2 gene. Individuals affected by OCA2 as well as other types of albinism are at a significantly increased risk for sun-induced skin-cancers, including malignant melanoma (MM). OBJECTIVE: To identify the molecular etiology of oculocutaneous albinism in a previously uncharacterized melanoma pedigree and to investigate the relationship between two OCA2 variants and melanoma predisposition in this pedigree. METHODS: DNA and RNA were isolated from the peripheral blood of seven patients in a familial melanoma pedigree. Electron microscopy was performed on the individual with clinical oculocutaneous albinism. OCA2, TYRP1, MC1R, CDKN2A/p16, CDKN2A/p19ARF, and CDK4 genes were sequenced in affected individuals. The relationship between OCA2 variants and melanoma was assessed using a pedigree likelihood-based method. RESULTS: The proband was determined to be an OCA2 compound heterozygous mutation carrier with a previously reported conservative missense mutation (V443I) and a novel non-conservative missense mutation (L734R). The pedigree contained individuals diagnosed with both cutaneous and iris melanoma. Based on co-segregation analysis, the odds of these OCA2 variants being high penetrance loci for melanoma was: 1.3-to-1 if we include the iris melanoma as affected and 6.5-to-1 if we only consider cutaneous melanoma as affected. CONCLUSION: The discovery of this novel OCA2 variant adds to the body of evidence on the detrimental effects of OCA2 gene mutations on pigmentation, supports existing GWAS data on the relevance of the OCA2 gene in melanoma predisposition, and may ultimately assist in the development of targeted molecular therapies in the treatment of OCA and melanoma.
PMCID:4775076
PMID: 23103111
ISSN: 0923-1811
CID: 206362
Comparative proteomic analysis of the ATP-sensitive K(+) channel complex in different tissue types
Kefaloyianni, Eirini; Lyssand, John S; Moreno, Cesar; Delaroche, Diane; Hong, Miyoun; Fenyo, David; Mobbs, Charles V; Neubert, Thomas A; Coetzee, William A
ATP-sensitive K(+) (K(ATP) ) channels are expressed ubiquitously, but have diverse roles in various organs and cells. Their diversity can partly be explained by distinct tissue-specific compositions of four copies of the pore-forming inward rectifier potassium channel subunits (Kir6.1 and/or Kir6.2) and four regulatory sulfonylurea receptor subunits (SUR1 and/or SUR2). Channel function and/or subcellular localization also can be modified by the proteins with which they transiently or permanently interact to generate even more diversity. We performed a quantitative proteomic analysis of K(ATP) channel complexes in the heart, endothelium, insulin-secreting min6 cells (pancreatic beta-cell like), and the hypothalamus to identify proteins with which they interact in different tissues. Glycolysis is an overrepresented pathway in identified proteins of the heart, min6 cells, and the endothelium. Proteins with other energy metabolic functions were identified in the hypothalamic samples. These data suggest that the metabolo-electrical coupling conferred by K(ATP) channels is conferred partly by proteins with which they interact. A large number of identified cytoskeletal and trafficking proteins suggests endocytic recycling may help control K(ATP) channel surface density and/or subcellular localization. Overall, our data demonstrate that K(ATP) channels in different tissues may assemble with proteins having common functions, but that tissue-specific complex organization also occurs.
PMCID:3717560
PMID: 23197389
ISSN: 1615-9853
CID: 213632
Immunization targeting a minor plaque constituent clears beta-amyloid and rescues behavioral deficits in an Alzheimer's disease mouse model
Morales-Corraliza, Jose; Schmidt, Stephen D; Mazzella, Matthew J; Berger, Jason D; Wilson, Donald A; Wesson, Daniel W; Jucker, Mathias; Levy, Efrat; Nixon, Ralph A; Mathews, Paul M
Although anti-human beta-amyloid (Abeta) immunotherapy clears brain beta-amyloid plaques in Alzheimer's disease (AD), targeting additional brain plaque constituents to promote clearance has not been attempted. Endogenous murine Abeta is a minor Abeta plaque component in amyloid precursor protein (APP) transgenic AD models, which we show is approximately 3%-8% of the total accumulated Abeta in various human APP transgenic mice. Murine Abeta codeposits and colocalizes with human Abeta in amyloid plaques, and the two Abeta species coimmunoprecipitate together from brain extracts. In the human APP transgenic mouse model Tg2576, passive immunization for 8 weeks with a murine-Abeta-specific antibody reduced beta-amyloid plaque pathology, robustly decreasing both murine and human Abeta levels. The immunized mice additionally showed improvements in two behavioral assays, odor habituation and nesting behavior. We conclude that passive anti-murine Abeta immunization clears Abeta plaque pathology-including the major human Abeta component-and decreases behavioral deficits, arguing that targeting minor endogenous brain plaque constituents can be beneficial, broadening the range of plaque-associated targets for AD therapeutics.
PMCID:3426627
PMID: 22608241
ISSN: 0197-4580
CID: 180342
Increased nitric oxide production in lymphatic endothelial cells causes impairment of lymphatic drainage in cirrhotic rats
Ribera, Jordi; Pauta, Montse; Melgar-Lesmes, Pedro; Tugues, Sonia; Fernandez-Varo, Guillermo; Held, Kara F; Soria, Guadalupe; Tudela, Raul; Planas, Anna M; Fernandez-Hernando, Carlos; Arroyo, Vicente; Jimenez, Wladimiro; Morales-Ruiz, Manuel
BACKGROUND AND AIM: The lymphatic network plays a major role in maintaining tissue fluid homoeostasis. Therefore several pathological conditions associated with oedema formation result in deficient lymphatic function. However, the role of the lymphatic system in the pathogenesis of ascites and oedema formation in cirrhosis has not been fully clarified. The aim of this study was to investigate whether the inability of the lymphatic system to drain tissue exudate contributes to the oedema observed in cirrhosis. METHODS: Cirrhosis was induced in rats by CCl(4) inhalation. Lymphatic drainage was evaluated using fluorescent lymphangiography. Expression of endothelial nitric oxide synthase (eNOS) was measured in primary lymphatic endothelial cells (LyECs). Inhibition of eNOS activity in cirrhotic rats with ascites (CH) was carried out by L-N(G)-methyl-L-arginine (L-NMMA) treatment (0.5 mg/kg/day). RESULTS: The (CH) rats had impaired lymphatic drainage in the splanchnic and peripheral regions compared with the control (CT) rats. LyECs isolated from the CH rats showed a significant increase in eNOS and nitric oxide (NO) production. In addition, the lymphatic vessels of the CH rats showed a significant reduction in smooth muscle cell (SMC) coverage compared with the CT rats. CH rats treated with L-NMMA for 7 days showed a significant improvement in lymphatic drainage and a significant reduction in ascites volume, which were associated with increased plasma volume. This beneficial effect of L-NMMA inhibition was also associated with a significant increase in lymphatic SMC coverage. CONCLUSIONS: The upregulation of eNOS in the LyECs of CH rats causes long-term lymphatic remodelling, which is characterised by a loss of SMC lymphatic coverage. The amelioration of this lymphatic abnormality by chronic eNOS inhibition results in improved lymphatic drainage and reduced ascites.
PMID: 22267600
ISSN: 0017-5749
CID: 210182