Searched for: school:SOM
Department/Unit:Cell Biology
Application of the PHENotype SIMulator for rapid identification of potential candidates in effective COVID-19 drug repurposing
Maria, Naomi I; Rapicavoli, Rosaria Valentina; Alaimo, Salvatore; Bischof, Evelyne; Stasuzzo, Alessia; Broek, Jantine A C; Pulvirenti, Alfredo; Mishra, Bud; Duits, Ashley J; Ferro, Alfredo
The current, rapidly diversifying pandemic has accelerated the need for efficient and effective identification of potential drug candidates for COVID-19. Knowledge on host-immune response to SARS-CoV-2 infection, however, remains limited with few drugs approved to date. Viable strategies and tools are rapidly arising to address this, especially with repurposing of existing drugs offering significant promise. Here we introduce a systems biology tool, the PHENotype SIMulator, which -by leveraging available transcriptomic and proteomic databases-allows modeling of SARS-CoV-2 infection in host cells in silico to i) determine with high sensitivity and specificity (both>96%) the viral effects on cellular host-immune response, resulting in specific cellular SARS-CoV-2 signatures and ii) utilize these cell-specific signatures to identify promising repurposable therapeutics. Powered by this tool, coupled with domain expertise, we identify several potential COVID-19 drugs including methylprednisolone and metformin, and further discern key cellular SARS-CoV-2-affected pathways as potential druggable targets in COVID-19 pathogenesis.
PMID: 36911878
ISSN: 2405-8440
CID: 5495892
Peptide Vaccine Against ADAMTS-7 Ameliorates Atherosclerosis and Postinjury Neointima Hyperplasia
Ma, Zihan; Mao, Chenfeng; Chen, Xiao; Yang, Shiyu; Qiu, Zhihua; Yu, Baoqi; Jia, Yiting; Wu, Chao; Wang, Yiyi; Wang, Yuhui; Gu, Rui; Yu, Fang; Yin, Yanhui; Wang, Xian; Xu, Qingbo; Liu, Chuanju; Liao, Yuhua; Zheng, Jingang; Fu, Yi; Kong, Wei
BACKGROUND:The metalloprotease ADAMTS-7 (a disintegrin and metalloproteinase with thrombospondin type 1 motif 7) is a novel locus associated with human coronary atherosclerosis. ADAMTS-7 deletion protects against atherosclerosis and vascular restenosis in rodents. METHODS: RESULTS: CONCLUSIONS:ATS7vac is a novel atherosclerosis vaccine that also alleviates in-stent restenosis. The application of ATS7vac would be a complementary therapeutic avenue to the current lipid-lowering strategy for atherosclerotic disease.
PMID: 36562301
ISSN: 1524-4539
CID: 5431892
Structural basis of histone H2A lysine 119 deubiquitination by Polycomb Repressive Deubiquitinase BAP1/ASXL1
Thomas, Jonathan F; Valencia-Sánchez, Marco Igor; Tamburri, Simone; Gloor, Susan L; Rustichelli, Samantha; Godínez-López, Victoria; De Ioannes, Pablo; Lee, Rachel; Abini-Agbomson, Stephen; Gretarsson, Kristjan; Burg, Jonathan M; Hickman, Allison R; Sun, Lu; Gopinath, Saarang; Taylor, Hailey; Meiners, Matthew J; Cheek, Marcus A; Rice, William; Nudler, Evgeny; Lu, Chao; Keogh, Michael-Christopher; Pasini, Diego; Armache, Karim-Jean
UNLABELLED:The maintenance of gene expression patterns during metazoan development is achieved by the actions of Polycomb group (PcG) complexes. An essential modification marking silenced genes is monoubiquitination of histone H2A lysine 119 (H2AK119Ub) deposited by the E3 ubiquitin ligase activity of the non-canonical Polycomb Repressive Complex 1. The Polycomb Repressive Deubiquitinase (PR-DUB) complex cleaves monoubiquitin from histone H2A lysine 119 (H2AK119Ub) to restrict focal H2AK119Ub at Polycomb target sites and to protect active genes from aberrant silencing. BAP1 and ASXL1, subunits that form active PR-DUB, are among the most frequently mutated epigenetic factors in human cancers, underscoring their biological importance. How PR-DUB achieves specificity for H2AK119Ub to regulate Polycomb silencing is unknown, and the mechanisms of most of the mutations in BAP1 and ASXL1 found in cancer have not been established. Here we determine a cryo-EM structure of human BAP1 bound to the ASXL1 DEUBAD domain in complex with a H2AK119Ub nucleosome. Our structural, biochemical, and cellular data reveal the molecular interactions of BAP1 and ASXL1 with histones and DNA that are critical for remodeling the nucleosome and thus establishing specificity for H2AK119Ub. These results further provide a molecular explanation for how >50 mutations in BAP1 and ASXL1 found in cancer can dysregulate H2AK119Ub deubiquitination, providing new insight into understanding cancer etiology. ONE SENTENCE SUMMARY/UNASSIGNED:We reveal the molecular mechanism of nucleosomal H2AK119Ub deubiquitination by human BAP1/ASXL1.
PMID: 36865140
ISSN: 2692-8205
CID: 5852342
Structures of LRP2 reveal a molecular machine for endocytosis
Beenken, Andrew; Cerutti, Gabriele; Brasch, Julia; Guo, Yicheng; Sheng, Zizhang; Erdjument-Bromage, Hediye; Aziz, Zainab; Robbins-Juarez, Shelief Y; Chavez, Estefania Y; Ahlsen, Goran; Katsamba, Phinikoula S; Neubert, Thomas A; Fitzpatrick, Anthony W P; Barasch, Jonathan; Shapiro, Lawrence
The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2 or megalin) is representative of the phylogenetically conserved subfamily of giant LDL receptor-related proteins, which function in endocytosis and are implicated in diseases of the kidney and brain. Here, we report high-resolution cryoelectron microscopy structures of LRP2 isolated from mouse kidney, at extracellular and endosomal pH. The structures reveal LRP2 to be a molecular machine that adopts a conformation for ligand binding at the cell surface and for ligand shedding in the endosome. LRP2 forms a homodimer, the conformational transformation of which is governed by pH-sensitive sites at both homodimer and intra-protomer interfaces. A subset of LRP2 deleterious missense variants in humans appears to impair homodimer assembly. These observations lay the foundation for further understanding the function and mechanism of LDL receptors and implicate homodimerization as a conserved feature of the LRP receptor subfamily.
PMID: 36750096
ISSN: 1097-4172
CID: 5426892
Capsular Polysaccharide Is Essential for the Virulence of the Antimicrobial-Resistant Pathogen Enterobacter hormaechei
St John, Amelia; Perault, Andrew I; Giacometti, Sabrina I; Sommerfield, Alexis G; DuMont, Ashley L; Lacey, Keenan A; Zheng, Xuhui; Sproch, Julia; Petzold, Chris; Dancel-Manning, Kristen; Gonzalez, Sandra; Annavajhala, Medini; Beckford, Colleen; Zeitouni, Nathalie; Liang, Feng-Xia; van Bakel, Harm; Shopsin, Bo; Uhlemann, Anne-Catrin; Pironti, Alejandro; Torres, Victor J
Nosocomial infections caused by multidrug-resistant (MDR) Enterobacter cloacae complex (ECC) pathogens are on the rise. However, the virulence strategies employed by these pathogens remain elusive. Here, we study the interaction of ECC clinical isolates with human serum to define how this pathogen evades the antimicrobial action of complement, one of the first lines of host-mediated immune defense. We identified a small number of serum-sensitive strains, including Enterobacter hormaechei strain NR3055, which we exploited for the in vitro selection of serum-resistant clones. Comparative genomics between the serum-sensitive NR3055 strain and the isolated serum-resistant clones revealed a premature stop codon in the wzy gene of the capsular polysaccharide biosynthesis locus of NR3055. The complementation of wzy conferred serum resistance to NR3055, prevented the deposition of complement proteins on the bacterial surface, inhibited phagocytosis by human neutrophils, and rendered the bacteria virulent in a mouse model of peritonitis. Mice exposed to a nonlethal dose of encapsulated NR3055 were protected from subsequent lethal infections by encapsulated NR3055, whereas mice that were previously exposed to unencapsulated NR3055 succumbed to infection. Thus, capsule is a key immune evasion determinant for E. hormaechei, and it is a potential target for prophylactics and therapeutics to combat these increasingly MDR human pathogens. IMPORTANCE Infections caused by antimicrobial resistant bacteria are of increasing concern, especially those due to carbapenem-resistant Enterobacteriaceae pathogens. Included in this group are species of the Enterobacter cloacae complex, regarding which there is a paucity of knowledge on the infection biology of the pathogens, despite their clinical relevance. In this study, we combine techniques in comparative genomics, bacterial genetics, and diverse models of infection to establish capsule as an important mechanism of Enterobacter pathogens to resist the antibacterial activity of serum, a first line of host defense against bacterial infections. We also show that immune memory targeting the Enterobacter capsule protects against lethal infection. The further characterization of Enterobacter infection biology and the immune response to infection are needed for the development of therapies and preventative interventions targeting these highly antibiotic resistant pathogens.
PMID: 36779722
ISSN: 2150-7511
CID: 5421192
Single-cell RNA sequencing reveals the effects of chemotherapy on human pancreatic adenocarcinoma and its tumor microenvironment
Werba, Gregor; Weissinger, Daniel; Kawaler, Emily A; Zhao, Ende; Kalfakakou, Despoina; Dhara, Surajit; Wang, Lidong; Lim, Heather B; Oh, Grace; Jing, Xiaohong; Beri, Nina; Khanna, Lauren; Gonda, Tamas; Oberstein, Paul; Hajdu, Cristina; Loomis, Cynthia; Heguy, Adriana; Sherman, Mara H; Lund, Amanda W; Welling, Theodore H; Dolgalev, Igor; Tsirigos, Aristotelis; Simeone, Diane M
The tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) is a complex ecosystem that drives tumor progression; however, in-depth single cell characterization of the PDAC TME and its role in response to therapy is lacking. Here, we perform single-cell RNA sequencing on freshly collected human PDAC samples either before or after chemotherapy. Overall, we find a heterogeneous mixture of basal and classical cancer cell subtypes, along with distinct cancer-associated fibroblast and macrophage subpopulations. Strikingly, classical and basal-like cancer cells exhibit similar transcriptional responses to chemotherapy and do not demonstrate a shift towards a basal-like transcriptional program among treated samples. We observe decreased ligand-receptor interactions in treated samples, particularly between TIGIT on CD8 + T cells and its receptor on cancer cells, and identify TIGIT as the major inhibitory checkpoint molecule of CD8 + T cells. Our results suggest that chemotherapy profoundly impacts the PDAC TME and may promote resistance to immunotherapy.
PMCID:9925748
PMID: 36781852
ISSN: 2041-1723
CID: 5427092
Modulation of GPR133 (ADGRD1) Signaling by its Intracellular Interaction Partner Extended Synaptotagmin 1 (ESYT1)
Stephan, Gabriele; Erdjument-Bromage, Hediye; Liu, Wenke; Frenster, Joshua D; Ravn-Boess, Niklas; Bready, Devin; Cai, Julia; Fenyo, David; Neubert, Thomas; Placantonakis, Dimitris G
GPR133 (ADGRD1) is an adhesion G protein-coupled receptor that signals through Gαs and is required for growth of glioblastoma (GBM), an aggressive brain malignancy. The regulation of GPR133 signaling is incompletely understood. Here, we use proximity biotinylation proteomics to identify ESYT1, a Ca2+-dependent mediator of endoplasmic reticulum-plasma membrane bridge formation, as an intracellular interactor of GPR133. ESYT1 knockdown or knockout increases GPR133 signaling, while its overexpression has the opposite effect, without altering GPR133 levels in the plasma membrane. The GPR133-ESYT1 interaction requires the Ca2+-sensing C2C domain of ESYT1. Thapsigargin-mediated increases in cytosolic Ca2+ relieve signaling-suppressive effects of ESYT1 by promoting ESYT1-GPR133 dissociation. ESYT1 knockdown or knockout in GBM impairs tumor growth in vitro, suggesting functions of ESYT1 beyond the interaction with GPR133. Our findings suggest a novel mechanism for modulation of GPR133 signaling by increased cytosolic Ca2+, which reduces the signaling-suppressive interaction between GPR133 and ESYT1 to raise cAMP levels.
PMID: 36798364
ISSN: 2692-8205
CID: 5770482
Correction to: BTLA+CD200+ B cells dictate the divergent immune landscape and immunotherapeutic resistance in metastatic vs. primary pancreatic cancer
Diskin, Brian; Adam, Salma; Soto, Gustavo Sanchez; Liria, Miguel; Aykut, Berk; Sundberg, Belen; Li, Eric; Leinwand, Joshua; Chen, Ruonan; Kim, Mirhee; Salas, Ruben D; Cassini, Marcelo F; Buttar, Chandan; Wang, Wei; Farooq, Mohammad Saad; Shadaloey, Sorin A A; Werba, Gregor; Fnu, Amreek; Yang, Fan; Hirsch, Carolina; Glinski, John; Panjwani, Angilee; Weitzner, Yael; Cohen, Deirdre; Asghar, Usman; Miller, George
PMID: 36707621
ISSN: 1476-5594
CID: 5419832
Observational prospective unblinded case-control study to evaluate the effect of the Gamma3® distal targeting system for long nails on radiation exposure and time for distal screw placement
Konda, Sanjit R; Maseda, Meghan; Leucht, Philipp; Tejwani, Nirmal; Ganta, Abhishek; Egol, Kenneth A
PURPOSE/OBJECTIVE:To determine if the DTS decreases radiation exposure (primary outcome measure), fluoroscopy time (secondary outcome measure), and time to distal screw placement (secondary outcome measure) compared to the freehand "perfect circles" method when used for locking of cephalomedullary nails in the treatment of femur fractures METHODS: Fifty-eight patients with hip or femoral shaft fractures that were treated with a long cephalomedullary nail were enrolled in this study. Cohorts were determined based on the method of distal interlocking screw placement into either the "Perfect Circles" or "Distal Targeting" cohort. Time from cephalad screw placement to placement of final distal interlocking screw (seconds), radiation exposure (mGy), and fluoroscopy time (seconds) were compared between groups. Hospital quality measures were compared between cohorts. RESULTS:Use of the DTS resulted in 77% (4.3x) lower radiation exposure (p < 0.001), 64% (2.7x) lower fluoroscopy time (p < 0.001), and 60% (1.7x) lower intraoperative time from end of cephalad screw placement to end of distal interlocking screw placement (p < 0.001) compared to the freehand "perfect circles" method. There was no difference in 30-day or 90-day complication rates between cohorts. CONCLUSION/CONCLUSIONS:The Stryker Gamma3® Distal Targeting System is a safe, effective and efficient alternative to the freehand "perfect circles" method.
PMID: 36517283
ISSN: 1879-0267
CID: 5382252
Loss of Adgra3 causes obstructive azoospermia with high penetrance in male mice
Nybo, Maja L; Kvam, Jone M; Nielsen, John E; Frederiksen, Hanne; Spiess, Katja; Jensen, Kristian H R; Gadgaard, Sarina; Walser, Anna L S; Thomsen, Jesper S; Cowin, Pamela; Juul, Anders; Jensen, Martin B; Rosenkilde, Mette M
The adhesion receptor ADGRA3 (GPR125) is a known spermatogonial stem cell marker, but its impact on male reproduction and fertility has not been examined. Using a mouse model lacking Adgra3 (Adgra3-/- ), we show that 55% of the male mice are infertile from puberty despite having normal spermatogenesis and epididymal sperm count. Instead, male mice lacking Adgra3 exhibited decreased estrogen receptor alpha expression and transient dilation of the epididymis. Combined with an increased estradiol production, this indicates a post-pubertal hormonal imbalance and fluid retention. Dye injection revealed a blockage between the ejaculatory duct and the urethra, which is rare in mice suffering from infertility, thereby mimicking the etiologies of obstructive azoospermia found in human male infertility. To summarize, male reproductive tract development is dependent on ADGRA3 function that in concert with estrogen signaling may influence fluid handling during sperm maturation and storage.
PMID: 36688818
ISSN: 1530-6860
CID: 5401922