Searched for: school:SOM
Department/Unit:Cell Biology
Transosseous tunnels versus suture anchors for the repair of acute quadriceps and patellar tendon ruptures: A systematic review and meta-analysis of biomechanical studies
Dankert, John F; Mehta, Devan D; Remark, Lindsey H; Leucht, Philipp
BACKGROUND:Multiple techniques have been developed for the repair of acute quadriceps and patellar tendon ruptures with the goal of optimizing clinical outcomes while minimizing complications and costs. The purpose of this study was to evaluate the biomechanical properties of transosseous tunnels and suture anchors for the repair of quadriceps and patellar tendon ruptures. METHODS:≥25%). RESULTS:A total of 392 studies were identified from the initial literature search with 7 studies meeting the eligibility criteria for quadriceps tendon repair and 8 studies meeting the eligibility criteria for patellar tendon repair. Based on the random-effects model for total gap formation and load to failure for quadriceps tendon repair, the mean difference was 8.88 mm (95% CI, -8.31 mm to 26.06 mm; p = 0.31) in favor of a larger gap with transosseous tunnels and -117.25N (95%CI, -242.73N to 8.23N; p = 0.07) in favor of a larger load to failure with suture anchors. A similar analysis for patellar tendon repair demonstrated a mean difference of 2.86 mm (95% CI, 1.08 mm to 4.64 mm; p = 0.002) in favor of a larger gap with transosseous tunnels and -56.34N (95% CI, -226.75 to 114.07N; p = 0.52) in favor of a larger load to failure with suture anchor repair. CONCLUSIONS:Transosseous tunnels are biomechanically similar to suture anchors for quadriceps tendon repair. Patellar tendon repair may benefit from reduced gap formation after cycling with suture anchor repair, but the load to failure for both techniques is biomechanically similar. Additional studies are necessary to evaluate these and alternative repair techniques. LEVEL OF EVIDENCE/METHODS:Systematic review and meta-analysis of biomechanical studies, Level V.
PMID: 35490080
ISSN: 1436-2023
CID: 5217802
Persistent hepatitis B virus and HIV coinfections in dually humanized mice engrafted with human liver and immune system
Hogan, Glenn; Winer, Benjamin Y; Ahodantin, James; Sellau, Julie; Huang, Tiffany; Douam, Florian; Funaki, Masaya; Chiriboga, Luis; Su, Lishan; Ploss, Alexander
Chronic hepatitis B (CHB), caused by hepatitis B virus (HBV), remains a major medical problem. HBV has a high propensity for progressing to chronicity and can result in severe liver disease, including fibrosis, cirrhosis, and hepatocellular carcinoma. CHB patients frequently present with viral coinfection, including human immunodeficiency virus type (HIV) and hepatitis delta virus. About 10% of chronic HIV carriers are also persistently infected with HBV, which can result in more exacerbated liver disease. Mechanistic studies of HBV-induced immune responses and pathogenesis, which could be significantly influenced by HIV infection, have been hampered by the scarcity of immunocompetent animal models. Here, we demonstrate that humanized mice dually engrafted with components of a human immune system and a human liver supported HBV infection, which was partially controlled by human immune cells, as evidenced by lower levels of serum viremia and HBV replication intermediates in the liver. HBV infection resulted in priming and expansion of human HLA-restricted CD8+ T cells, which acquired an activated phenotype. Notably, our dually humanized mice support persistent coinfections with HBV and HIV, which opens opportunities for analyzing immune dysregulation during HBV and HIV coinfection, and preclinical testing of novel immunotherapeutics.
PMID: 37403703
ISSN: 1096-9071
CID: 5537292
Differential functions of the KRAS splice variants
Kochen Rossi, Juan; Nuevo-Tapioles, Cristina; Philips, Mark R
RAS proteins are small GTPases that transduce signals from membrane receptors to signaling pathways that regulate growth and differentiation. Four RAS proteins are encoded by three genes - HRAS, KRAS, NRAS. Among them, KRAS is mutated in human cancer more frequently than any other oncogene. The KRAS pre-mRNA is alternatively spliced to generate two transcripts, KRAS4A and KRAS4B, that encode distinct proto-oncoproteins that differ almost exclusively in their C-terminal hypervariable regions (HVRs) that controls subcellular trafficking and membrane association. The KRAS4A isoform arose 475 million years ago in jawed vertebrates and has persisted in all vertebrates ever since, strongly suggesting non-overlapping functions of the splice variants. Because KRAS4B is expressed at higher levels in most tissues, it has been considered the principal KRAS isoform. However, emerging evidence for KRAS4A expression in tumors and splice variant-specific interactions and functions have sparked interest in this gene product. Among these findings, the KRAS4A-specific regulation of hexokinase I is a stark example. The aim of this mini-review is to provide an overview of the origin and differential functions of the two splice variants of KRAS.
PMCID:10335385
PMID: 37222266
ISSN: 1470-8752
CID: 5536582
Unraveling the mechanisms behind joint damage [Comment]
Fu, Wenyu; Liu, Chuan-Ju
A subtype of myeloid monocyte mediates the transition from autoimmunity to joint destruction in rheumatoid arthritis.
PMID: 37366155
ISSN: 2050-084x
CID: 5538552
PTK7 is a positive allosteric modulator of GPR133 signaling in glioblastoma
Frenster, Joshua D; Erdjument-Bromage, Hediye; Stephan, Gabriele; Ravn-Boess, Niklas; Wang, Shuai; Liu, Wenke; Bready, Devin; Wilcox, Jordan; Kieslich, Björn; Jankovic, Manuel; Wilde, Caroline; Horn, Susanne; Sträter, Norbert; Liebscher, Ines; Schöneberg, Torsten; Fenyo, David; Neubert, Thomas A; Placantonakis, Dimitris G
The adhesion G-protein-coupled receptor GPR133 (ADGRD1) supports growth of the brain malignancy glioblastoma. How the extracellular interactome of GPR133 in glioblastoma modulates signaling remains unknown. Here, we use affinity proteomics to identify the transmembrane protein PTK7 as an extracellular binding partner of GPR133 in glioblastoma. PTK7 binds the autoproteolytically generated N-terminal fragment of GPR133 and its expression in trans increases GPR133 signaling. This effect requires the intramolecular cleavage of GPR133 and PTK7's anchoring in the plasma membrane. PTK7's allosteric action on GPR133 signaling is additive with but topographically distinct from orthosteric activation by soluble peptide mimicking the endogenous tethered Stachel agonist. GPR133 and PTK7 are expressed in adjacent cells in glioblastoma, where their knockdown phenocopies each other. We propose that this ligand-receptor interaction is relevant to the pathogenesis of glioblastoma and possibly other physiological processes in healthy tissues.
PMID: 37354459
ISSN: 2211-1247
CID: 5543042
Systems-level analyses of protein-protein interaction network dysfunctions via epichaperomics identify cancer-specific mechanisms of stress adaptation
Rodina, Anna; Xu, Chao; Digwal, Chander S; Joshi, Suhasini; Patel, Yogita; Santhaseela, Anand R; Bay, Sadik; Merugu, Swathi; Alam, Aftab; Yan, Pengrong; Yang, Chenghua; Roychowdhury, Tanaya; Panchal, Palak; Shrestha, Liza; Kang, Yanlong; Sharma, Sahil; Almodovar, Justina; Corben, Adriana; Alpaugh, Mary L; Modi, Shanu; Guzman, Monica L; Fei, Teng; Taldone, Tony; Ginsberg, Stephen D; Erdjument-Bromage, Hediye; Neubert, Thomas A; Manova-Todorova, Katia; Tsou, Meng-Fu Bryan; Young, Jason C; Wang, Tai; Chiosis, Gabriela
Systems-level assessments of protein-protein interaction (PPI) network dysfunctions are currently out-of-reach because approaches enabling proteome-wide identification, analysis, and modulation of context-specific PPI changes in native (unengineered) cells and tissues are lacking. Herein, we take advantage of chemical binders of maladaptive scaffolding structures termed epichaperomes and develop an epichaperome-based 'omics platform, epichaperomics, to identify PPI alterations in disease. We provide multiple lines of evidence, at both biochemical and functional levels, demonstrating the importance of these probes to identify and study PPI network dysfunctions and provide mechanistically and therapeutically relevant proteome-wide insights. As proof-of-principle, we derive systems-level insight into PPI dysfunctions of cancer cells which enabled the discovery of a context-dependent mechanism by which cancer cells enhance the fitness of mitotic protein networks. Importantly, our systems levels analyses support the use of epichaperome chemical binders as therapeutic strategies aimed at normalizing PPI networks.
PMCID:10290137
PMID: 37353488
ISSN: 2041-1723
CID: 5538522
Calcitonin Related Polypeptide Alpha Mediates Oral Cancer Pain
Tu, Nguyen Huu; Inoue, Kenji; Lewis, Parker K; Khan, Ammar; Hwang, Jun Hyeong; Chokshi, Varun; Dabovic, Branka Brukner; Selvaraj, Shanmugapriya; Bhattacharya, Aditi; Dubeykovskaya, Zinaida; Pinkerton, Nathalie M; Bunnett, Nigel W; Loomis, Cynthia A; Albertson, Donna G; Schmidt, Brian L
Oral cancer patients suffer pain at the site of the cancer. Calcitonin gene related polypeptide (CGRP), a neuropeptide expressed by a subset of primary afferent neurons, promotes oral cancer growth. CGRP also mediates trigeminal pain (migraine) and neurogenic inflammation. The contribution of CGRP to oral cancer pain is investigated in the present study. The findings demonstrate that CGRP-immunoreactive (-ir) neurons and neurites innervate orthotopic oral cancer xenograft tumors in mice. Cancer increases anterograde transport of CGRP in axons innervating the tumor, supporting neurogenic secretion as the source of CGRP in the oral cancer microenvironment. CGRP antagonism reverses oral cancer nociception in preclinical oral cancer pain models. Single-cell RNA-sequencing is used to identify cell types in the cancer microenvironment expressing the CGRP receptor components, receptor activity modifying protein 1 Ramp1 and calcitonin receptor like receptor (CLR, encoded by Calcrl). Ramp1 and Calcrl transcripts are detected in cells expressing marker genes for Schwann cells, endothelial cells, fibroblasts and immune cells. Ramp1 and Calcrl transcripts are more frequently detected in cells expressing fibroblast and immune cell markers. This work identifies CGRP as mediator of oral cancer pain and suggests the antagonism of CGRP to alleviate oral cancer pain.
PMCID:10341289
PMID: 37443709
ISSN: 2073-4409
CID: 5535282
Targeted viral adaptation generates a simian-tropic hepatitis B virus that infects marmoset cells
Liu, Yongzhen; Cafiero, Thomas R; Park, Debby; Biswas, Abhishek; Winer, Benjamin Y; Cho, Cheul H; Bram, Yaron; Chandar, Vasuretha; Connell, Aoife K O'; Gertje, Hans P; Crossland, Nicholas; Schwartz, Robert E; Ploss, Alexander
Hepatitis B virus (HBV) only infects humans and chimpanzees, posing major challenges for modeling HBV infection and chronic viral hepatitis. The major barrier in establishing HBV infection in non-human primates lies at incompatibilities between HBV and simian orthologues of the HBV receptor, sodium taurocholate co-transporting polypeptide (NTCP). Through mutagenesis analysis and screening among NTCP orthologues from Old World monkeys, New World monkeys and prosimians, we determined key residues responsible for viral binding and internalization, respectively and identified marmosets as a suitable candidate for HBV infection. Primary marmoset hepatocytes and induced pluripotent stem cell-derived hepatocyte-like cells support HBV and more efficient woolly monkey HBV (WMHBV) infection. Adapted chimeric HBV genome harboring residues 1-48 of WMHBV preS1 generated here led to a more efficient infection than wild-type HBV in primary and stem cell derived marmoset hepatocytes. Collectively, our data demonstrate that minimal targeted simianization of HBV can break the species barrier in small NHPs, paving the path for an HBV primate model.
PMCID:10276007
PMID: 37328459
ISSN: 2041-1723
CID: 5933422
RAB27B controls palmitoylation-dependent NRAS trafficking and signaling in myeloid leukemia
Ren, Jian-Gang; Xing, Bowen; Lv, Kaosheng; O'Keefe, Rachel A; Wu, Mengfang; Wang, Ruoxing; Bauer, Kaylyn M; Ghazaryan, Arevik; Burslem, George M; Zhang, Jing; O'Connell, Ryan M; Pillai, Vinodh; Hexner, Elizabeth O; Philips, Mark R; Tong, Wei
RAS mutations are among the most prevalent oncogenic drivers in cancers. RAS proteins propagate signals only when associated with cellular membranes as a consequence of lipid modifications that impact their trafficking. Here, we discovered that RAB27B, a RAB family small GTPase, controlled NRAS palmitoylation and trafficking to the plasma membrane, a localization required for activation. Our proteomic studies revealed RAB27B upregulation in CBL- or JAK2-mutated myeloid malignancies, and its expression correlated with poor prognosis in acute myeloid leukemias (AMLs). RAB27B depletion inhibited the growth of CBL-deficient or NRAS-mutant cell lines. Strikingly, Rab27b deficiency in mice abrogated mutant but not WT NRAS-mediated progenitor cell growth, ERK signaling, and NRAS palmitoylation. Further, Rab27b deficiency significantly reduced myelomonocytic leukemia development in vivo. Mechanistically, RAB27B interacted with ZDHHC9, a palmitoyl acyltransferase that modifies NRAS. By regulating palmitoylation, RAB27B controlled c-RAF/MEK/ERK signaling and affected leukemia development. Importantly, RAB27B depletion in primary human AMLs inhibited oncogenic NRAS signaling and leukemic growth. We further revealed a significant correlation between RAB27B expression and sensitivity to MEK inhibitors in AMLs. Thus, our studies presented a link between RAB proteins and fundamental aspects of RAS posttranslational modification and trafficking, highlighting future therapeutic strategies for RAS-driven cancers.
PMID: 37317963
ISSN: 1558-8238
CID: 5537232
Vitrification with Dimethyl Sulfoxide Induces Transcriptomic Alteration of Gene and Transposable Element Expression in Immature Human Oocytes
Wiltshire, Ashley; Schaal, Renata; Wang, Fang; Tsou, Tiffany; McKerrow, Wilson; Keefe, David
Despite substantial advancements in the field of cryobiology, oocyte and embryo cryopreservation still compromise developmental competence. Furthermore, dimethyl sulfoxide (DMSO), one of the most commonly used cryoprotectants, has been found to exert potent effects on the epigenetic landscape of cultured human cells, as well as mouse oocytes and embryos. Little is known about its impact on human oocytes. Additionally, few studies investigate the effects of DMSO on transposable elements (TE), the control of which is essential for the maintenance of genomic instability. The objective of this study was to investigate the impact of vitrification with DMSO-containing cryoprotectant on the transcriptome, including on TEs, of human oocytes. Twenty-four oocytes at the GV stage were donated by four healthy women undergoing elective oocyte cryopreservation. Oocytes were paired such that half from each patient were vitrified with DMSO-containing cryoprotectant (Vitrified Cohort), while the other half were snap frozen in phosphate buffer, unexposed to DMSO (Non-Vitrified Cohort). All oocytes underwent RNA sequencing via a method with high fidelity for single cell analysis, and which allows for the analysis of TE expression through Switching Mechanism at the 5'-end of the RNA Transcript sequencing 2 (SMARTseq2), followed by functional enrichment analysis. Of the 27,837 genes identified by SMARTseq2, 7331 (26.3%) were differentially expressed (p < 0.05). There was a significant dysregulation of genes involved in chromatin and histone modification. Mitochondrial function, as well as the Wnt, insulin, mTOR, HIPPO, and MAPK signaling pathways were also altered. The expression of TEs was positively correlated with the expression of PIWIL2, DNMT3A, and DNMT3B, and negatively correlated with age. These findings suggest that the current standard process of oocyte vitrification, involving DMSO-containing cryoprotectant, induces significant transcriptome changes, including those involving TEs.
PMCID:10298107
PMID: 37372413
ISSN: 2073-4425
CID: 5538612