Searched for: school:SOM
Department/Unit:Cell Biology
Integration of multiple signaling regulates through apoptosis the differential osteogenic potential of neural crest-derived and mesoderm-derived Osteoblasts
Li, Shuli; Meyer, Nathaniel P; Quarto, Natalina; Longaker, Michael T
Neural crest-derived (FOb) and mesoderm-derived (POb) calvarial osteoblasts are characterized by distinct differences in their osteogenic potential. We have previously demonstrated that enhanced activation of endogenous FGF and Wnt signaling confers greater osteogenic potential to FOb. Apoptosis, a key player in bone formation, is the main focus of this study. In the current work, we have investigated the apoptotic activity of FOb and POb cells during differentiation. We found that lower apoptosis, as measured by caspase-3 activity is a major feature of neural crest-derived osteoblast which also have higher osteogenic capacity. Further investigation indicated TGF-beta signaling as main positive regulator of apoptosis in these two populations of calvarial osteoblasts, while BMP and canonical Wnt signaling negatively regulate the process. By either inducing or inhibiting these signaling pathways we could modulate apoptotic events and improve the osteogenic potential of POb. Taken together, our findings demonstrate that integration of multiple signaling pathways contribute to imparting greater osteogenic potential to FOb by decreasing apoptosis.
PMCID:3607600
PMID: 23536803
ISSN: 1932-6203
CID: 1218212
Effects of long-term treatment with ranirestat, a potent aldose reductase inhibitor, on diabetic cataract and neuropathy in spontaneously diabetic torii rats
Ota, Ayumi; Kakehashi, Akihiro; Toyoda, Fumihiko; Kinoshita, Nozomi; Shinmura, Machiko; Takano, Hiroko; Obata, Hiroto; Matsumoto, Takafumi; Tsuji, Junichi; Dobashi, Yoh; Fujimoto, Wilfred Y; Kawakami, Masanobu; Kanazawa, Yasunori
We evaluated ranirestat, an aldose reductase inhibitor, in diabetic cataract and neuropathy (DN) in spontaneously diabetic Torii (SDT) rats compared with epalrestat, the positive control. Animals were divided into groups and treated once daily with oral ranirestat (0.1, 1.0, 10 mg/kg) or epalrestat (100 mg/kg) for 40 weeks, normal Sprague-Dawley rats, and untreated SDT rats. Lens opacification was scored from 0 (normal) to 3 (mature cataract). The combined scores (0-6) from both lenses represented the total for each animal. DN was assessed by measuring the motor nerve conduction velocity (MNCV) in the sciatic nerve. Sorbitol and fructose levels were measured in the lens and sciatic nerve 40 weeks after diabetes onset. Cataracts developed more in untreated rats than normal rats (P < 0.01). Ranirestat significantly (P < 0.01) inhibited rapid cataract development; epalrestat did not. Ranirestat significantly reversed the MNCV decrease (40.7 +/- 0.6 m/s) in SDT rats dose-dependently (P < 0.01). Epalrestat also reversed the prevented MNCV decrease (P < 0.05). Sorbitol levels in the sciatic nerve increased significantly in SDT rats (2.05 +/- 0.10 nmol/g), which ranirestat significantly suppressed dose-dependently, (P < 0.05, <0.01, and <0.01); epalrestat did not. Ranirestat prevents DN and cataract; epalrestat prevents DN only.
PMCID:3647549
PMID: 23671855
ISSN: 2314-6745
CID: 2328832
Biogenesis of the mouse egg's extracellular coat, the zona pellucida
Wassarman, Paul M; Litscher, Eveline S
Biogenesis of the zona pellucida (ZP), the extracellular coat that surrounds all mammalian eggs, is a universal and essential feature of mammalian oogenesis and reproduction. The mouse egg's ZP consists of only three glycoproteins, called ZP1-3, that are synthesized, secreted, and assembled into an extracellular coat exclusively by growing oocytes during late stages of oogenesis while oocytes are arrested in meiosis. Expression of ZP genes and synthesis of ZP1-3 are gender-specific. Nascent ZP1-3 are synthesized by oocytes as precursor polypeptides that possess several elements necessary for their secretion and assembly into a matrix of long fibrils outside of growing oocytes. Failure to synthesize either ZP2 or ZP3 by homozygous null female mice precludes formation of a ZP during oocyte growth and, due to faulty folliculogenesis and a paucity of ovulated eggs, results in infertility. High-resolution structural analyses suggest that ZP glycoproteins consist largely of immunoglobulin (Ig)-like folds and that the glycoproteins probably arose by duplication of a common Ig-like domain. Mouse ZP1-3 share many features, particularly a ZP domain, with extracellular coat glycoproteins of eggs from other vertebrate and invertebrate animals whose origins date back more than 600 million years. These and other aspects of ZP biogenesis are discussed in this review.
PMID: 23287036
ISSN: 0070-2153
CID: 1099932
Toward the treatment and prevention of Alzheimer's disease: rational strategies and recent progress
Gandy, Sam; Dekosky, Steven T
Alzheimer's disease (AD) is the major cause of late-life brain failure. In the past 25 years, autosomal dominant forms of AD were found to be primariy attributable to mutations in one of two presenilins, polytopic proteins that contain the catalytic site of the gamma-secretase protease that releases the amyloid beta (Abeta) peptide. Some familial AD is also due to mutations in the amyloid precursor protein (APP), but recently a mutation in APP was discovered that reduces Abeta generation and is protective against AD, further implicating amyloid metabolism. Prion-like seeding of amyloid fibrils and neurofibrillary tangles has been invoked to explain the stereotypical spread of AD within the brain. Treatment trials with anti-Abeta antibodies have shown target engagement, if not significant treatment effects. Attention is increasingly focused on presymptomatic intervention, because Abeta mismetabolism begins up to 25 years before symptoms begin. AD trials deriving from new biological information involve extraordinary international collaboration and may hold the best hope for success in the fight against AD.
PMCID:3625402
PMID: 23327526
ISSN: 0066-4219
CID: 213692
LEUKOCYTE TELOMERE LENGTH IS LONGER IN PATIENTS WITH ENDOMETRIOSIS COMPARED TO CONTROLS. [Meeting Abstract]
Dracxler, RC; Kalmbach, KH; Wang, F; Abrao, MS; Keefe, DL
ISI:000342554501533
ISSN: 1556-5653
CID: 2281932
Gli activity is critical at multiple stages of embryonic mammary and nipple development
Chandramouli, Anupama; Hatsell, Sarah J; Pinderhughes, Alicia; Koetz, Lisa; Cowin, Pamela
Gli3 is a transcriptional regulator of Hedgehog (Hh) signaling that functions as a repressor (Gli3(R)) or activator (Gli3(A)) depending upon cellular context. Previously, we have shown that Gli3(R) is required for the formation of mammary placodes #3 and #5. Here, we report that this early loss of Gli3 results in abnormal patterning of two critical regulators: Bmp4 and Tbx3, within the presumptive mammary rudiment (MR) #3 zone. We also show that Gli3 loss leads to failure to maintain mammary mesenchyme specification and loss of epithelial Wnt signaling, which impairs the later development of remaining MRs: MR#2 showed profound evagination and ectopic hairs formed within the presumptive areola; MR#4 showed mild invagination defects and males showed inappropriate retention of mammary buds in Gli3(xt/xt) mice. Importantly, mice genetically manipulated to misactivate Hh signaling displayed the same phenotypic spectrum demonstrating that the repressor function of Gli3(R) is essential during multiple stages of mammary development. In contrast, positive Hh signaling occurs during nipple development in a mesenchymal cuff around the lactiferous duct and in muscle cells of the nipple sphincter. Collectively, these data show that repression of Hh signaling by Gli3(R) is critical for early placodal patterning and later mammary mesenchyme specification whereas positive Hh signaling occurs during nipple development.
PMCID:3832531
PMID: 24260306
ISSN: 1932-6203
CID: 652352
Global Axonal Transport Rates are Unaltered in Htau Mice in vivo
Yuan, Aidong; Kumar, Asok; Sasaki, Takahiro; Duff, Karen; Nixon, Ralph A
Microtubule-based axonal transport is believed to become globally disrupted in Alzheimer's disease in part due to alterations of tau expression or phosphorylation. We previously showed that axonal transport rates along retinal ganglion axons are unaffected by deletion of normal mouse tau or by overexpression of wild-type human tau. Here, we report that htau mice expressing 3-fold higher levels of human tau in the absence of mouse tau also display normal fast and slow transport kinetics despite the presence of abnormally hyperphosphorylated tau in some neurons. In addition, markers of slow transport (neurofilament light subunit) and fast transport (snap25) exhibit normal distributions along optic axons of these mice. These studies demonstrate that human tau overexpression, even when associated with a limited degree of tau pathology, does not necessarily impair general axonal transport function in vivo.
PMCID:3819434
PMID: 23948900
ISSN: 1387-2877
CID: 542722
Commercially available angiotensin II At(2) receptor antibodies are nonspecific
Hafko, Roman; Villapol, Sonia; Nostramo, Regina; Symes, Aviva; Sabban, Esther L; Inagami, Tadashi; Saavedra, Juan M
Commercially available angiotensin II At(2) receptor antibodies are widely employed for receptor localization and quantification, but they have not been adequately validated. In this study, we characterized three commercially available At(2) receptor antibodies: 2818-1 from Epitomics, sc-9040 from Santa Cruz Biotechnology, Inc., and AAR-012 from Alomone Labs. Using western blot analysis the immunostaining patterns observed were different for every antibody tested, and in most cases consisted of multiple immunoreactive bands. Identical immunoreactive patterns were present in wild-type and At(2) receptor knockout mice not expressing the target protein. In the mouse brain, immunocytochemical studies revealed very different cellular immunoreactivity for each antibody tested. While the 2818-1 antibody reacted only with endothelial cells in small parenchymal arteries, the sc-9040 antibody reacted only with ependymal cells lining the cerebral ventricles, and the AAR-012 antibody reacted only with multiple neuronal cell bodies in the cerebral cortex. Moreover, the immunoreactivities were identical in brain tissue from wild-type or At(2) receptor knockout mice. Furthermore, in both mice and rat tissue extracts, there was no correlation between the observed immunoreactivity and the presence or absence of At(2) receptor binding or gene expression. We conclude that none of these commercially available At(2) receptor antibodies tested met the criteria for specificity. In the absence of full antibody characterization, competitive radioligand binding and determination of mRNA expression remain the only reliable approaches to study At(2) receptor expression.
PMCID:3698141
PMID: 23840911
ISSN: 1932-6203
CID: 606492
Structure-function relation of phospholamban: modulation of channel activity as a potential regulator of SERCA activity
Smeazzetto, Serena; Saponaro, Andrea; Young, Howard S; Moncelli, Maria Rosa; Thiel, Gerhard
Phospholamban (PLN) is a small integral membrane protein, which binds and inhibits in a yet unknown fashion the Ca(2+)-ATPase (SERCA) in the sarcoplasmic reticulum. When reconstituted in planar lipid bilayers PLN exhibits ion channel activity with a low unitary conductance. From the effect of non-electrolyte polymers on this unitary conductance we estimate a narrow pore with a diameter of ca. 2.2 A for this channel. This value is similar to that reported for the central pore in the structure of the PLN pentamer. Hence the PLN pentamer, which is in equilibrium with the monomer, is the most likely channel forming structure. Reconstituted PLN mutants, which either stabilize (K27A and R9C) or destabilize (I47A) the PLN pentamer and also phosphorylated PLN still generate the same unitary conductance of the wt/non-phosphorylated PLN. However the open probability of the phosphorylated PLN and of the R9C mutant is significantly lower than that of the respective wt/non-phosphorylated control. In the context of data on PLN/SERCA interaction and on Ca(2+) accumulation in the sarcoplasmic reticulum the present results are consistent with the view that PLN channel activity could participate in the balancing of charge during Ca(2+) uptake. A reduced total conductance of the K(+) transporting PLN by phosphorylation or by the R9C mutation may stimulate Ca(2+) uptake in the same way as an inhibition of K(+) channels in the SR membrane. The R9C-PLN mutation, a putative cause of dilated cardiomyopathy, might hence affect SERCA activity also via its inherent low open probability.
PMCID:3537670
PMID: 23308118
ISSN: 1932-6203
CID: 2444512
A real time chemotaxis assay unveils unique migratory profiles amongst different primary murine macrophages
Iqbal, Asif J; Regan-Komito, Daniel; Christou, Ivy; White, Gemma E; McNeill, Eileen; Kenyon, Amy; Taylor, Lewis; Kapellos, Theodore S; Fisher, Edward A; Channon, Keith M; Greaves, David R
Chemotaxis assays are an invaluable tool for studying the biological activity of inflammatory mediators such as CC chemokines, which have been implicated in a wide range of chronic inflammatory diseases. Conventional chemotaxis systems such as the modified Boyden chamber are limited in terms of the data captured given that the assays are analysed at a single time-point. We report the optimisation and validation of a label-free, real-time cell migration assay based on electrical cell impedance to measure chemotaxis of different primary murine macrophage populations in response to a range of CC chemokines and other chemoattractant signalling molecules. We clearly demonstrate key differences in the migratory behavior of different murine macrophage populations and show that this dynamic system measures true macrophage chemotaxis rather than chemokinesis or fugetaxis. We highlight an absolute requirement for Galphai signaling and actin cytoskeletal rearrangement as demonstrated by Pertussis toxin and cytochalasin D inhibition. We also studied the chemotaxis of CD14(+) human monocytes and demonstrate distinct chemotactic profiles amongst different monocyte donors to CCL2. This real-time chemotaxis assay will allow a detailed analysis of factors that regulate macrophage responses to chemoattractant cytokines and inflammatory mediators.
PMCID:3597586
PMID: 23516549
ISSN: 1932-6203
CID: 350012