Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14080


Ganglioside inhibition of CD8+ T cell cytotoxicity: interference with lytic granule trafficking and exocytosis

Lee, Hee Chul; Wondimu, Assefa; Liu, Yihui; Ma, Jennifer S Y; Radoja, Sasa; Ladisch, Stephan
Granule exocytosis-mediated cytotoxicity by CD8(+) CTL plays a crucial role in adaptive immunity to tumors and to intracellular pathogens. This T cell effector function has been shown to be defective in various murine tumor models and in human cancer. However, factors and their mechanisms that cause inhibition of CD8(+) T cell lytic function in tumor-bearing hosts remain to be fully defined. We postulate that gangliosides, highly expressed on tumor cell membranes, actively shed into the tumor microenvironment, and having well-established immunosuppressive properties, may be such a factor. We exposed primary mouse CD8(+) CTL to gangliosides derived from three sources (tumors and normal brain). This significantly inhibited cytotoxicity-mediated by granule exocytosis, that is, cytotoxicity of alloantigen-specific and polyclonal CD8(+) CTL in vitro. These molecules did not interfere with the interaction of CD8(+) T cells with their cognate targets. Rather, they inhibited lytic granule release in response both to TCR engagement and to stimuli that induce granule release in a nonpolarized manner. At the subcellular level, confocal microscopic imaging identified inhibition of polarization of lytic granules to the immunological synapse upon target cell recognition. Thus, tumor-shed gangliosides suppress lytic activity of CD8(+) T cells by a novel mechanism, that is, inhibition of trafficking of lytic granules in response to TCR engagement, as well as by interfering with the process of granule exocytosis in CD8(+) T cells.
PMID: 22956583
ISSN: 1550-6606
CID: 4350532

Increased risk of hepatic decompensation and hepatocellular carcinoma in HIV/HCV-co-infected patients compared to HCV-mono-infected patients despite combination antiretroviral therapy [Meeting Abstract]

Lo Re, V.; Tate, J.; Kallan, M.; Lim, J.; Goetz, M.; Klein, M.; Rimland, D.; Rodriguez-Barradas, M.; Butt, A.; Gibert, C.; Brown, S.; Kostman, J.; Strom, B.; Reddy, R.; Justice, A.; Localio, R.
ISI:000310588200104
ISSN: 1758-2652
CID: 2995562

Limb anterior-posterior polarity integrates activator and repressor functions of GLI2 as well as GLI3

Bowers, Megan; Eng, Liane; Lao, Zhimin; Turnbull, Rowena K; Bao, Xiaozhong; Riedel, Elyn; Mackem, Susan; Joyner, Alexandra L
Anterior-posterior (AP) limb patterning is directed by sonic hedgehog (SHH) signaling from the posteriorly located zone of polarizing activity (ZPA). GLI3 and GLI2 are the transcriptional mediators generally utilized in SHH signaling, and each can function as an activator (A) and repressor (R). Although GLI3R has been suggested to be the primary effector of SHH signaling during limb AP patterning, a role for GLI3A or GLI2 has not been fully ruled out, nor has it been determined whether Gli3 plays distinct roles in limb development at different stages. By conditionally removing Gli3 in the limb at multiple different time points, we uncovered four Gli3-mediated functions in limb development that occur at distinct but partially over-lapping time windows: AP patterning of the proximal limb, AP patterning of the distal limb, regulation of digit number and bone differentiation. Furthermore, by removing Gli2 in Gli3 temporal conditional knock-outs, we uncovered an essential role for Gli2 in providing the remaining posterior limb patterning seen in Gli3 single mutants. To test whether GLIAs or GLIRs regulate different aspects of AP limb patterning and/or digit number, we utilized a knock-in allele in which GLI1, which functions solely as an activator, is expressed in place of the bifunctional GLI2 protein. Interestingly, we found that GLIAs contribute to AP patterning specifically in the posterior limb, whereas GLIRs predominantly regulate anterior patterning and digit number. Since GLI3 is a more effective repressor, our results explain why GLI3 is required only for anterior limb patterning and why GLI2 can compensate for GLI3A in posterior limb patterning. Taken together, our data suggest that establishment of a complete range of AP positional identities in the limb requires integration of the spatial distribution, timing, and dosage of GLI2 and GLI3 activators and repressors.
PMCID:3432687
PMID: 22841643
ISSN: 0012-1606
CID: 967332

Craniosynostosis: molecular pathways and future pharmacologic therapy

Senarath-Yapa, Kshemendra; Chung, Michael T; McArdle, Adrian; Wong, Victor W; Quarto, Natalina; Longaker, Michael T; Wan, Derrick C
Craniosynostosis describes the premature fusion of one or more cranial sutures and can lead to dramatic manifestations in terms of appearance and functional impairment. Contemporary approaches for this condition are primarily surgical and are associated with considerable morbidity and mortality. The additional post-operative problems of suture refusion and bony relapse may also necessitate repeated surgeries with their own attendant risks. Therefore, a need exists to not only optimize current strategies but also to develop novel biological therapies which could obviate the need for surgery and potentially treat or even prevent premature suture fusion. Clinical studies of patients with syndromic craniosynostosis have provided some useful insights into the important signaling pathways and molecular events guiding suture fate. Furthermore, the highly conserved nature of craniofacial development between humans and other species have permitted more focused and step-wise elucidation of the molecular underpinnings of craniosynostosis. This review will describe the clinical manifestations of craniosynostosis, reflect on our understanding of syndromic and non-syndromic craniosynostoses and outline the different approaches that have been adopted in our laboratory and elsewhere to better understand the pathogenesis of premature suture fusion. Finally, we will assess to what extent our improved understanding of the pathogenesis of craniosynostosis, achieved through laboratory-based and clinical studies, have made the possibility of a non-surgical pharmacological approach both realistic and tangible.
PMCID:3562251
PMID: 23249483
ISSN: 1547-6278
CID: 1217102

DeoxyArbutin and its derivatives inhibit tyrosinase activity and melanin synthesis without inducing reactive oxygen species or apoptosis

Chawla, Smita; Kvalnes, Kalla; deLong, Mitchell A; Wickett, Randall; Manga, Prashiela; Boissy, Raymond E
Safety is a major concern in developing commercial skin-lightening agents. Here, we report the modulating effects of deoxyArbutin (dA) and its second-generation derivatives - deoxyFuran (dF), 2-fluorodeoxyArbutin (fdA), and thiodeoxyArbutin (tdA) - on tyrosinase, and consequently, on melanization. Results demonstrate that dA and its derivatives inhibit tyrosine hydroxylase and dopa oxidase activity of tyrosinase. The inhibition is dose-dependent, thereby inhibiting melanin synthesis in intact melanocytes, when used at concentrations that retain 95% viability of the treated cells in culture. Herein we demonstrate that dA, and its second-generation derivatives dF, fdA, and tdA, exhibit dose-dependent reductions in melanocyte cell number, primarily due to inhibition of proliferation rather than initiation of apoptosis as exemplified by hydroquinone (HQ), ie, cytostatic as opposed to cytotoxic. Human and murine melanocytes with functional mutations in either tyrosinase or tyrosinase-related protein 1 (Tyrp1) are less sensitive to the cytostatic effects of dA and its derivatives. Minimal amounts of reactive oxygen species (ROS) were generated upon treatment with dA and its derivatives, in contrast to a dramatic amount of ROS induced by HQ. This increase in ROS subsequently induced the expression of the endogenous antioxidant catalase in treated melanocytes. Treatment with exogenous antioxidants provided protection for melanocytes treated with HQ, but not dA and its derivatives, suggesting that HQ exerts more oxidative stress. These studies demonstrate that dA and its derivatives are relatively safe tyrosinase inhibitors for skin lightening or for ameliorating hyperpigmented lesions.
PMID: 23134995
ISSN: 1545-9616
CID: 836532

The importance of HER2 signaling in the tumor-initiating cell population in aromatase inhibitor-resistant breast cancer

Gilani, Rabia A; Kazi, Armina A; Shah, Preeti; Schech, Amanda J; Chumsri, Saranya; Sabnis, Gauri; Jaiswal, Anil K; Brodie, Angela H
Aromatase inhibitors (AIs) are an effective therapy in treating estrogen receptor-positive breast cancer. Nonetheless, a significant percentage of patients either do not respond or become resistant to AIs. Decreased dependence on ER-signaling and increased dependence on growth factor receptor signaling pathways, particularly human epidermal growth factor receptor 2 (EGFR2/HER2), have been implicated in AI resistance. However, the role of growth factor signaling remains unclear. This current study investigates the possibility that signaling either through HER2 alone or through interplay between epidermal growth factor receptor 1 (EGFR/HER1) and HER2 mediates AI resistance by increasing the tumor initiating cell (TIC) subpopulation in AI-resistant cells via regulation of stem cell markers, such as breast cancer resistance protein (BCRP). TICs and BCRP are both known to be involved in drug resistance. Results from in vitro analyses of AI-resistant versus AI-sensitive cells and HER2-versus HER2+ cells, as well as from in vivo xenograft tumors, indicate that (1) AI-resistant cells overexpress both HER2 and BCRP and exhibit increased TIC characteristics compared to AI-sensitive cells; (2) inhibition of HER2 and/or BCRP decrease TIC characteristics in letrozole-resistant cells; and (3) HER2 and its dimerization partner EGFR/HER1 are involved in the regulation of BCRP. Overall, these results suggest that reducing or eliminating the TIC subpopulation with agents that target BCRP, HER2, EGFR/HER1, and/or their downstream kinase pathways could be effective in preventing and/or treating acquired AI resistance.
PMID: 22878889
ISSN: 0167-6806
CID: 989582

Regenerative surgery: tissue engineering in general surgical practice

Wong, Victor W; Wan, Derrick C; Gurtner, Geoffrey C; Longaker, Michael T
Tissue engineering is a broad interdisciplinary field that aims to develop complex tissue and organ constructs through a combination of cell-, biomaterial-, and molecular-based approaches. This approach has the potential to transform the surgical treatment for diseases including trauma, cancer, and congenital malformations. A fundamental knowledge of key concepts in regenerative medicine is imperative for surgeons to maintain a leading role in developing and implementing these technologies. Researchers have started to elucidate the biologic mechanisms that maintain organ homeostasis throughout life, indicating that humans may have the latent capacity to regenerate complex tissues. By exploiting this intrinsic potential of the body, we can move even closer to developing functional, autologous replacement parts for a wide range of surgical diseases.
PMID: 22777416
ISSN: 0364-2313
CID: 900852

Solid-organ transplantation in older adults: current status and future research

Abecassis, M; Bridges, N D; Clancy, C J; Dew, M A; Eldadah, B; Englesbe, M J; Flessner, M F; Frank, J C; Friedewald, J; Gill, J; Gries, C; Halter, J B; Hartmann, E L; Hazzard, W R; Horne, F M; Hosenpud, J; Jacobson, P; Kasiske, B L; Lake, J; Loomba, R; Malani, P N; Moore, T M; Murray, A; Nguyen, M-H; Powe, N R; Reese, P P; Reynolds, H; Samaniego, M D; Schmader, K E; Segev, D L; Shah, A S; Singer, L G; Sosa, J A; Stewart, Z A; Tan, J C; Williams, W W; Zaas, D W; High, K P
An increasing number of patients older than 65 years are referred for and have access to organ transplantation, and an increasing number of older adults are donating organs. Although short-term outcomes are similar in older versus younger transplant recipients, older donor or recipient age is associated with inferior long-term outcomes. However, age is often a proxy for other factors that might predict poor outcomes more strongly and better identify patients at risk for adverse events. Approaches to transplantation in older adults vary across programs, but despite recent gains in access and the increased use of marginal organs, older patients remain less likely than other groups to receive a transplant, and those who do are highly selected. Moreover, few studies have addressed geriatric issues in transplant patient selection or management, or the implications on health span and disability when patients age to late life with a transplanted organ. This paper summarizes a recent trans-disciplinary workshop held by ASP, in collaboration with NHLBI, NIA, NIAID, NIDDK and AGS, to address issues related to kidney, liver, lung, or heart transplantation in older adults and to propose a research agenda in these areas.
PMCID:3459231
PMID: 22958872
ISSN: 1600-6143
CID: 4815492

Tissue engineering for the management of chronic wounds: current concepts and future perspectives

Wong, Victor W; Gurtner, Geoffrey C
Chronic wounds constitute a significant and growing biomedical burden. With the increasing growth of populations prone to dysfunctional wound healing, there is an urgent and unmet need for novel strategies to both prevent and treat these complications. Tissue engineering offers the potential to create functional skin, and the synergistic efforts of biomedical engineers, material scientists, and molecular and cell biologists have yielded promising therapies for non-healing wounds. However, traditional paradigms for wound healing focus largely on the role of inflammatory cells and fail to incorporate more recent research highlighting the importance of stem cells and matrix dynamics in skin repair. Approaches to chronic wound healing centred on inflammation alone are inadequate to guide the development of regenerative medicine-based technologies. As the molecular pathways and biologic defects underlying non-healing wounds are further elucidated, multifaceted bioengineering systems must advance in parallel to exploit this knowledge. In this viewpoint essay, we highlight the current concepts in tissue engineering for chronic wounds and speculate on areas for future research in this increasingly interdisciplinary field.
PMID: 22742728
ISSN: 0906-6705
CID: 900842

Opposite roles of furin and PC5A in N-cadherin processing

Maret, Deborah; Sadr, Mohamad Seyed; Sadr, Emad Seyed; Colman, David R; Del Maestro, Rolando F; Seidah, Nabil G
We recently demonstrated that lack of Furin-processing of the N-cadherin precursor (proNCAD) in highly invasive melanoma and brain tumor cells results in the cell-surface expression of a nonadhesive protein favoring cell migration and invasion in vitro. Quantitative polymerase chain reaction analysis of malignant human brain tumor cells revealed that of all proprotein convertases (PCs) only the levels of Furin and PC5A are modulated, being inversely (Furin) or directly (PC5A) correlated with brain tumor invasive capacity. Intriguingly, the N-terminal sequence following the Furin-activated NCAD site (RQKR downward arrowDW(161), mouse nomenclature) reveals a second putative PC-processing site (RIRSDR downward arrowDK(189)) located in the first extracellular domain. Cleavage at this site would abolish the adhesive functions of NCAD because of the loss of the critical Trp(161). This was confirmed upon analysis of the fate of the endogenous prosegment of proNCAD in human malignant glioma cells expressing high levels of Furin and low levels of PC5A (U343) or high levels of PC5A and negligible Furin levels (U251). Cellular analyses revealed that Furin is the best activating convertase releasing an ~17-kDa prosegment, whereas PC5A is the major inactivating enzyme resulting in the secretion of an ~20-kDa product. Like expression of proNCAD at the cell surface, cleavage of the NCAD molecule at RIRSDR downward arrowDK(189) renders the U251 cancer cells less adhesive to one another and more migratory. Our work modifies the present view on posttranslational processing and surface expression of classic cadherins and clarifies how NCAD possesses a range of adhesive potentials and plays a critical role in tumor progression.
PMCID:3479834
PMID: 23097623
ISSN: 1476-5586
CID: 605582