Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14178


MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice

Miller, Ashley M; Gilchrist, Derek S; Nijjar, Jagtar; Araldi, Elisa; Ramirez, Cristina M; Lavery, Christopher A; Fernandez-Hernando, Carlos; McInnes, Iain B; Kurowska-Stolarska, Mariola
Hepatic steatosis is a global epidemic that is thought to contribute to the pathogenesis of type 2 diabetes. MicroRNAs (miRs) are regulators that can functionally integrate a range of metabolic and inflammatory pathways in liver. We aimed to investigate the functional role of miR-155 in hepatic steatosis. Male C57BL/6 wild-type (WT) and miR-155(-/-) mice were fed either normal chow or high fat diet (HFD) for 6 months then lipid levels, metabolic and inflammatory parameters were assessed in livers and serum of the mice. Mice lacking endogenous miR-155 that were fed HFD for 6 months developed increased hepatic steatosis compared to WT controls. This was associated with increased liver weight and serum VLDL/LDL cholesterol and alanine transaminase (ALT) levels, as well as increased hepatic expression of genes involved in glucose regulation (Pck1, Cebpa), fatty acid uptake (Cd36) and lipid metabolism (Fasn, Fabp4, Lpl, Abcd2, Pla2g7). Using miRNA target prediction algorithms and the microarray transcriptomic profile of miR-155(-/-) livers, we identified and validated that Nr1h3 (LXRalpha) as a direct miR-155 target gene that is potentially responsible for the liver phenotype of miR-155(-/-) mice. Together these data indicate that miR-155 plays a pivotal role regulating lipid metabolism in liver and that its deregulation may lead to hepatic steatosis in patients with diabetes.
PMCID:3749101
PMID: 23991091
ISSN: 1932-6203
CID: 709282

BMP receptor 1A determines the cell fate of the postnatal growth plate

Jing, Junjun; Ren, Yinshi; Zong, Zhaowen; Liu, Chuanju; Kamiya, Nobuhiro; Mishina, Yuji; Liu, Ying; Zhou, Xuedong; Feng, Jian Q
Bone morphogenic proteins (BMPs) are critical for both chondrogenesis and osteogenesis. Previous studies reported that embryos deficient in Bmp receptor (Bmpr)1a or Bmpr1b in cartilage display subtle skeletal defects; however, double mutant embryos develop severe skeletal defects, suggesting a functional redundancy that is essential for early chondrogenesis. In this study, we examined the postnatal role of Bmpr1a in cartilage. In the Bmpr1a conditional knockout (cKO, a cross between Bmpr1a flox and aggrecan-CreER (T2) induced by a one-time-tamoxifen injection at birth and harvested at ages of 2, 4, 8 and 20 weeks), there was essentially no long bone growth with little expression of cartilage markers such as SOX9, IHH and glycoproteins. Unexpectedly, the null growth plate was replaced by bone-like tissues, supporting the notions that the progenitor cells in the growth plate, which normally form cartilage, can form other tissues such as bone and fibrous; and that BMPR1A determines the cell fate. A working hypothesis is proposed to explain the vital role of BMPR1A in postnatal chondrogenesis.
PMCID:3807016
PMID: 24163588
ISSN: 1449-2288
CID: 687272

Proliferation of murine midbrain neural stem cells depends upon an endogenous sonic hedgehog (Shh) source

Martinez, Constanza; Cornejo, Victor Hugo; Lois, Pablo; Ellis, Tammy; Solis, Natalia P; Wainwright, Brandon J; Palma, Veronica
The Sonic Hedgehog (Shh) pathway is responsible for critical patterning events early in development and for regulating the delicate balance between proliferation and differentiation in the developing and adult vertebrate brain. Currently, our knowledge of the potential role of Shh in regulating neural stem cells (NSC) is largely derived from analyses of the mammalian forebrain, but for dorsal midbrain development it is mostly unknown. For a detailed understanding of the role of Shh pathway for midbrain development in vivo, we took advantage of mouse embryos with cell autonomously activated Hedgehog (Hh) signaling in a conditional Patched 1 (Ptc1) mutant mouse model. This animal model shows an extensive embryonic tectal hypertrophy as a result of Hh pathway activation. In order to reveal the cellular and molecular origin of this in vivo phenotype, we established a novel culture system to evaluate neurospheres (nsps) viability, proliferation and differentiation. By recreating the three-dimensional (3-D) microenvironment we highlight the pivotal role of endogenous Shh in maintaining the stem cell potential of tectal radial glial cells (RGC) and progenitors by modulating their Ptc1 expression. We demonstrate that during late embryogenesis Shh enhances proliferation of NSC, whereas blockage of endogenous Shh signaling using cyclopamine, a potent Hh pathway inhibitor, produces the opposite effect. We propose that canonical Shh signaling plays a central role in the control of NSC behavior in the developing dorsal midbrain by acting as a niche factor by partially mediating the response of NSC to epidermal growth factor (EGF) and fibroblast growth factor (FGF) signaling. We conclude that endogenous Shh signaling is a critical mechanism regulating the proliferation of stem cell lineages in the embryonic dorsal tissue.
PMCID:3679138
PMID: 23776550
ISSN: 1932-6203
CID: 2559372

Drosophila XBP1 Expression Reporter Marks Cells under Endoplasmic Reticulum Stress and with High Protein Secretory Load

Ryoo, Hyung Don; Li, Josepher; Kang, Min-Ji
Expression of genes in the endoplasmic reticulum (ER) beyond its protein folding capacity activates signaling pathways that are collectively referred to as the Unfolded Protein Response (UPR). A major branch of the UPR pathway is mediated by IRE1, an ER-tethered endonuclease. Upon ER stress-induced activation, IRE1 splices the mRNA of XBP1, thereby generating an active isoform of this transcription factor. During normal Drosophila development, tissues with high protein secretory load show signs of IRE1/XBP1 activity indicative of inherent ER stress associated with those cell types. Here, we report that the XBP1 promoter activity itself is enhanced in secretory tissues of Drosophila, and it can be induced by excessive ER stress. Specifically, we developed a Drosophila XBP1 transcription reporter by placing dsRed under the control of the XBP1 intergenic sequence. DsRed expression in these xbp1p>dsRed transgenic flies showed patterns similar to that of xbp1 transcript distribution. In healthy developing flies, the reporter expression was highest in salivary glands and the intestine. In the adult, the male reproductive organs showed high levels of dsRed. These tissues are known to have high protein secretory load. Consistently, the xbp1p>dsRed reporter was induced by excessive ER stress caused by mutant Rhodopsin-1 overexpression. These results suggest that secretory cells suffer from inherent ER stress, and the xbp1p>dsRed flies provide a useful tool in studying the function and homeostasis of those cells.
PMCID:3787058
PMID: 24098723
ISSN: 1932-6203
CID: 574142

High-throughput methods for electron crystallography

Stokes, David L; Ubarretxena-Belandia, Iban; Gonen, Tamir; Engel, Andreas
Membrane proteins play a tremendously important role in cell physiology and serve as a target for an increasing number of drugs. Structural information is key to understanding their function and for developing new strategies for combating disease. However, the complex physical chemistry associated with membrane proteins has made them more difficult to study than their soluble cousins. Electron crystallography has historically been a successful method for solving membrane protein structures and has the advantage of providing a native lipid environment for these proteins. Specifically, when membrane proteins form two-dimensional arrays within a lipid bilayer, electron microscopy can be used to collect images and diffraction and the corresponding data can be combined to produce a three-dimensional reconstruction, which under favorable conditions can extend to atomic resolution. Like X-ray crystallography, the quality of the structures are very much dependent on the order and size of the crystals. However, unlike X-ray crystallography, high-throughput methods for screening crystallization trials for electron crystallography are not in general use. In this chapter, we describe two alternative methods for high-throughput screening of membrane protein crystallization within the lipid bilayer. The first method relies on the conventional use of dialysis for removing detergent and thus reconstituting the bilayer; an array of dialysis wells in the standard 96-well format allows the use of a liquid-handling robot and greatly increases throughput. The second method relies on titration of cyclodextrin as a chelating agent for detergent; a specialized pipetting robot has been designed not only to add cyclodextrin in a systematic way, but to use light scattering to monitor the reconstitution process. In addition, the use of liquid-handling robots for making negatively stained grids and methods for automatically imaging samples in the electron microscope are described.
PMCID:3644976
PMID: 23132066
ISSN: 1064-3745
CID: 202222

Modeling, Docking, and Fitting of Atomic Structures to 3D Maps from Cryo-Electron Microscopy

Allen, Gregory S; Stokes, David L
Electron microscopy (EM) and image analysis offer an effective approach for determining the three-dimensional structure of macromolecular complexes. The versatility of these methods means that molecular species not normally amenable to other structural methods, e.g., X-ray crystallography and NMR spectroscopy, can be analyzed. However, the resolution of EM structures is often too low to provide an atomic model directly by chain tracing. Instead, a combination of modeling and fitting can be an effective way to analyze the EM structure at an atomic level, thus allowing localization of subunits or evaluation of conformational changes. Here we describe the steps involved in this process: building a homology model, fitting this model to an EM map, and using computational methods for docking of additional domains to the model. As an example, we illustrate the methods using an integral membrane protein, CopA, which functions to pump copper across the membrane in an ATP-dependent manner. In this example, we build a homology model based on the published atomic coordinates for a related calcium pump from sarcoplasmic reticulum (SERCA). After fitting this homology model to a 17 A resolution EM map, computational software is used to dock a metal-binding domain (MBD) that is unique to the copper pump. Although this software identifies a number of plausible interfaces for docking, the constraints of the EM map steer us to select a unique solution. Thus, the synergy of these two methods allows us to describe both the location of the unknown MBD relative to the other cytoplasmic domains and the atomic details of the domain interface.
PMCID:3645293
PMID: 23132064
ISSN: 1064-3745
CID: 202212

Insulin-Stimulated Degradation of Apolipoprotein B100: Roles of Class II Phosphatidylinositol-3-Kinase and Autophagy

Andreo, Ursula; Guo, Liang; Chirieac, Doru V; Tuyama, Ana C; Montenont, Emilie; Brodsky, Jeffrey L; Fisher, Edward A
Both in humans and animal models, an acute increase in plasma insulin levels, typically following meals, leads to transient depression of hepatic secretion of very low density lipoproteins (VLDL). One contributing mechanism for the decrease in VLDL secretion is enhanced degradation of apolipoprotein B100 (apoB100), which is required for VLDL formation. Unlike the degradation of nascent apoB100, which occurs in the endoplasmic reticulum (ER), insulin-stimulated apoB100 degradation occurs post-ER and is inhibited by pan-phosphatidylinositol (PI)3-kinase inhibitors. It is unclear, however, which of the three classes of PI3-kinases is required for insulin-stimulated apoB100 degradation, as well as the proteolytic machinery underlying this response. Class III PI3-kinase is not activated by insulin, but the other two classes are. By using a class I-specific inhibitor and siRNA to the major class II isoform in liver, we now show that it is class II PI3-kinase that is required for insulin-stimulated apoB100 degradation in primary mouse hepatocytes. Because the insulin-stimulated process resembles other examples of apoB100 post-ER proteolysis mediated by autophagy, we hypothesized that the effects of insulin in autophagy-deficient mouse primary hepatocytes would be attenuated. Indeed, apoB100 degradation in response to insulin was significantly impaired in two types of autophagy-deficient hepatocytes. Together, our data demonstrate that insulin-stimulated apoB100 degradation in the liver requires both class II PI3-kinase activity and autophagy.
PMCID:3596368
PMID: 23516411
ISSN: 1932-6203
CID: 248342

A real time chemotaxis assay unveils unique migratory profiles amongst different primary murine macrophages

Iqbal, Asif J; Regan-Komito, Daniel; Christou, Ivy; White, Gemma E; McNeill, Eileen; Kenyon, Amy; Taylor, Lewis; Kapellos, Theodore S; Fisher, Edward A; Channon, Keith M; Greaves, David R
Chemotaxis assays are an invaluable tool for studying the biological activity of inflammatory mediators such as CC chemokines, which have been implicated in a wide range of chronic inflammatory diseases. Conventional chemotaxis systems such as the modified Boyden chamber are limited in terms of the data captured given that the assays are analysed at a single time-point. We report the optimisation and validation of a label-free, real-time cell migration assay based on electrical cell impedance to measure chemotaxis of different primary murine macrophage populations in response to a range of CC chemokines and other chemoattractant signalling molecules. We clearly demonstrate key differences in the migratory behavior of different murine macrophage populations and show that this dynamic system measures true macrophage chemotaxis rather than chemokinesis or fugetaxis. We highlight an absolute requirement for Galphai signaling and actin cytoskeletal rearrangement as demonstrated by Pertussis toxin and cytochalasin D inhibition. We also studied the chemotaxis of CD14(+) human monocytes and demonstrate distinct chemotactic profiles amongst different monocyte donors to CCL2. This real-time chemotaxis assay will allow a detailed analysis of factors that regulate macrophage responses to chemoattractant cytokines and inflammatory mediators.
PMCID:3597586
PMID: 23516549
ISSN: 1932-6203
CID: 350012

Laser capture microdissection for analysis of macrophage gene expression from atherosclerotic lesions

Feig, Jonathan E; Fisher, Edward A
Coronary artery disease, resulting from atherosclerosis, is the leading cause of death in the Western world. Most previous studies have subjected atherosclerotic arteries, a tissue of mixed cellular composition, to homogenization in order to identify the factors in plaque development, thereby obscuring information relevant to specific cell types. Because macrophage foam cells are critical mediators in atherosclerotic plaque advancement, we reasoned that performing gene analysis on those cells would provide specific insight in novel regulatory factors and potential therapeutic targets. We demonstrated for the first time in vascular biology that foam cell-specific RNA can be isolated by laser capture microdissection (LCM) of plaques. As expected, compared to whole tissue, a significant enrichment in foam cell-specific RNA transcripts was observed. Furthermore, because regression of atherosclerosis is a tantalizing clinical goal, we developed and reported a transplantation-based mouse model. This involved allowing plaques to form in apoE-/- mice and then changing the plaque's plasma environment from hyperlipidemia to normolipidemia. Under those conditions, rapid regression ensued in a process involving emigration of plaque foam cells to regional and systemic lymph nodes. Using LCM, we were able to show that under regression conditions, there was decreased expression in foam cells of inflammatory genes, but an up-regulation of cholesterol efflux genes. Interestingly, we also found that increased expression of chemokine receptor CCR7, a known factor in dendritic cell migration, was required for regression. In conclusion, the LCM methods described in this chapter, which have already lead to a number of striking findings, will likely further facilitate the study of cell type-specific gene expression in animal and human plaques during various stages of atherosclerosis, and after genetic, pharmacologic, and environmental perturbations.
PMCID:4278963
PMID: 23912984
ISSN: 1064-3745
CID: 484152

HDL Induces the Expression of the M2 Macrophage Markers Arginase 1 and Fizz-1 in a STAT6-Dependent Process

Sanson, Marie; Distel, Emilie; Fisher, Edward A
Our lab has previously shown in a mouse model that normalization of a low HDL level achieves atherosclerotic plaque regression. This included the shift from a pro ("M1") to an anti-inflammatory ("M2") phenotypic state of plaque macrophages. Whether HDL can directly cause this phenotypic change and, if so, what the signaling mechanism is, were explored in the present studies. Murine primary macrophages treated with HDL showed increased gene expression for the M2 markers Arginase-1 (Arg-1) and Fizz-1, which are classically induced by IL-4. HDL was able to potentiate the IL-4-induced changes in Arg-1, and tended to do the same for Fizz-1, while suppressing the expression of inflammatory genes in response to IFNgamma. The effects of either IL-4 or HDL were suppressed when macrophages were from STAT6(-/-) mice, but inhibitor studies suggested differential utilization of JAK isoforms by IL-4 and HDL to activate STAT6 by phosphorylation. Overall, our results describe a new function of HDL, namely its ability to directly enrich macrophages in markers of the M2, anti-inflammatory, state in a process requiring STAT6.
PMCID:3749183
PMID: 23991225
ISSN: 1932-6203
CID: 519522