Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14080


The role of apoptosis-induced proliferation for regeneration and cancer

Ryoo, Hyung Don; Bergmann, Andreas
Genes dedicated to killing cells must have evolved because of their positive effects on organismal survival. Positive functions of apoptotic genes have been well established in a large number of biological contexts, including their role in eliminating damaged and potentially cancerous cells. More recently, evidence has suggested that proapoptotic proteins-mostly caspases-can induce proliferation of neighboring surviving cells to replace dying cells. This process, that we will refer to as "apoptosis-induced proliferation," may be critical for stem cell activity and tissue regeneration. Depending on the caspases involved, at least two distinct types of apoptosis-induced proliferation can be distinguished. One of these types have been studied using a model in which cells have initiated cell death, but are prevented from executing it because of effector caspase inhibition, thereby generating "undead" cells that emit persistent mitogen signaling and overgrowth. Such conditions are likely to contribute to certain forms of cancer. In this review, we summarize the current knowledge of apoptosis-induced proliferation and discuss its relevance for tissue regeneration and cancer.
PMCID:3405855
PMID: 22855725
ISSN: 1943-0264
CID: 174400

Whole-mount fluorescence in situ hybridization and antibody staining of Drosophila embryos

Broihier, Heather
Whole-mount RNA in situ hybridizations with digoxigenin-conjugated probes and alkaline phosphatase biochemistry have been used widely for many years to map expression pattern domains in the Drosophila embryo. To capitalize on the number of molecular markers in the central nervous system (CNS) and to enable expression analysis at the single-cell level, fluorescence in situ hybridization procedures are becoming standard. This protocol describes methods for the simultaneous detection of RNA and protein using fluorescence in Drosophila embryos. It uses the tyramide signal amplication (TSA) system from PerkinElmer to amplify a horseradish peroxidase (HRP) signal. By combining this technology with an HRP-conjugated antidigoxigenin antibody, we can detect standard antidigoxigenin RNA probes fluorescently.
PMID: 22854564
ISSN: 1940-3402
CID: 2322752

Reversal of Impaired Hippocampal Long-Term Potentiation and Contextual Fear Memory Deficits in Angelman Syndrome Model Mice by ErbB Inhibitors

Kaphzan, Hanoch; Hernandez, Pepe; Jung, Joo In; Cowansage, Kiriana K; Deinhardt, Katrin; Chao, Moses V; Abel, Ted; Klann, Eric
BACKGROUND: Angelman syndrome (AS) is a human neuropsychiatric disorder associated with autism, mental retardation, motor abnormalities, and epilepsy. In most cases, AS is caused by the deletion of the maternal copy of UBE3A gene, which encodes the enzyme ubiquitin ligase E3A, also termed E6-AP. A mouse model of AS has been generated and these mice exhibit many of the observed neurological alterations in humans. Because of clinical and neuroanatomical similarities between AS and schizophrenia, we examined AS model mice for alterations in the neuregulin-ErbB4 pathway, which has been implicated in the pathophysiology of schizophrenia. We focused our studies on the hippocampus, one of the major brain loci impaired in AS mice. METHODS: We determined the expression of neuregulin 1 and ErbB4 receptors in AS mice and wild-type littermates (ages 10-16 weeks) and studied the effects of ErbB inhibition on long-term potentiation in hippocampal area cornu ammonis 1 and on hippocampus-dependent contextual fear memory. RESULTS: We observed enhanced neuregulin-ErbB4 signaling in the hippocampus of AS model mice and found that ErbB inhibitors could reverse deficits in long-term potentiation, a cellular substrate for learning and memory. In addition, we found that an ErbB inhibitor enhanced long-term contextual fear memory in AS model mice. CONCLUSIONS: Our findings suggest that neuregulin-ErbB4 signaling is involved in synaptic plasticity and memory impairments in AS model mice, suggesting that ErbB inhibitors have therapeutic potential for the treatment of AS.
PMCID:3368039
PMID: 22381732
ISSN: 0006-3223
CID: 174183

The ubiquitin-proteasome system and the autophagic-lysosomal system in Alzheimer disease

Ihara, Yasuo; Morishima-Kawashima, Maho; Nixon, Ralph
As neurons age, their survival depends on eliminating a growing burden of damaged, potentially toxic proteins and organelles-a capability that declines owing to aging and disease factors. Here, we review the two proteolytic systems principally responsible for protein quality control in neurons and their important contributions to Alzheimer disease pathogenesis. In the first section, the discovery of paired helical filament ubiquitination is described as a backdrop for discussing the importance of the ubiquitin-proteasome system in Alzheimer disease. In the second section, we review the prominent involvement of the lysosomal system beginning with pathological endosomal-lysosomal activation and signaling at the very earliest stages of Alzheimer disease followed by the progressive failure of autophagy. These abnormalities, which result in part from Alzheimer-related genes acting directly on these lysosomal pathways, contribute to the development of each of the Alzheimer neuropathological hallmarks and represent a promising therapeutic target.
PMID: 22908190
ISSN: 2157-1422
CID: 3373282

Thrombospondin-1 (TSP-1) Analogs ABT-510 and ABT-898 Inhibit Prolactinoma Growth and Recover Active Pituitary Transforming Growth Factor-beta1 (TGF-beta1)

Recouvreux, M Victoria; Camilletti, M Andrea; Rifkin, Daniel B; Becu-Villalobos, Damasia; Diaz-Torga, Graciela
Prolactinomas are the most prevalent type of secreting pituitary tumors in humans and generally respond well to a medical therapy with dopamine agonists. However, for patients exhibiting resistance to dopaminergic drugs, alternative treatments are desired. Antiangiogenic strategies might represent a potential therapy for these tumors. Thrombospondin 1 (TSP-1) is a large multifunctional glycoprotein involved in multiple biological processes including angiogenesis, apoptosis, and activation of TGF-beta1. Because tumors that overexpress TSP-1 grow more slowly, have fewer metastases, and have decreased angiogenesis, TSP-1 provides a novel target for cancer treatment. ABT-510 and ABT-898 are TSP-1 synthetic analogs that mimic its antiangiogenic action. In the present study, we explored the potential effect of ABT-510 and ABT-898 on experimental prolactinomas induced by chronic diethylstilbestrol (DES) treatment in female rats. We demonstrated that a 2-wk treatment with ABT-510 and ABT-898 counteracted the increase in pituitary size and serum prolactin levels as well as the pituitary proliferation rate induced by DES. These inhibitory effects on tumor growth could be mediated by the antiangiogenic properties of the drugs. We also demonstrated that ABT-510 and ABT-898, in addition to their described antiangiogenic effects, increased active TGF-beta1 level in the tumors. We postulate that the recovery of the local cytokine activation participates in the inhibition of lactotrope function. These results place these synthetic TSP-1 analogs as potential alternative or complementary treatments in dopamine agonist-resistant prolactinomas.
PMCID:3404347
PMID: 22700773
ISSN: 0013-7227
CID: 174582

Quantitative analysis of BDNF/TrkB protein and mRNA in cortical and striatal neurons using alpha-tubulin as a normalization factor

Ma, Bin; Savas, Jeffrey N; Chao, Moses V; Tanese, Naoko
The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase TrkB serve important regulatory roles for multiple aspects of the biology of neurons including cell death, survival, growth, differentiation, and plasticity. Regulation of the local availability of BDNF/TrkB at distinct subcellular domains such as soma, dendrites, axons, growth cones, nerve terminals, and spines appears to contribute to their specific functions. In view of the variance in size and shape of neurons and their compartments, previous quantitative studies of the BDNF/TrkB protein and mRNA lacked a robust normalization procedure. To overcome this problem, we have established methods that use immunofluorescence detection of alpha-tubulin as a normalization factor for the quantitative analysis of protein and mRNA in primary rat cortical and striatal neurons in culture. The efficacy of this approach is demonstrated by studying the dynamic distribution of proteins and mRNA at different growth stages or conditions. Treatment of cultured neurons with KCl resulted in increased levels of TrkB protein, reduced levels of BDNF mRNA (composite of multiple transcripts) and a slight reduction in BDNF protein levels in the dendrites from the cortex. The KCl treatment also lowered the percentage of BDNF and TrkB proteins in the soma indicative of protein transport. Finally, analysis of the rat cortical and striatal neurons demonstrated comparable or even higher levels of BDNF/TrkB protein and BDNF mRNA in the neurons from the striatum. Thus, in contrast to previous observations made in vivo, striatal neurons are capable of synthesizing BDNF mRNA when cultured in growth media in vitro. The analytical approach presented here provides a detailed understanding of BDNF/TrkB levels in response to a variety of neuronal activities. Our methods could be used broadly, including applications in cell and tissue cytometry, to yield accurate quantitative data of gene expression in cellular and subcellular contexts. (c) 2012 International Society for Advancement of Cytometry.
PMCID:3549458
PMID: 22649026
ISSN: 1552-4922
CID: 173025

Desmosome-ion channel interactions and their possible role in arrhythmogenic cardiomyopathy

Delmar, Mario
Most commonly, arrhythmogenic cardiomyopathy (also known as arrhythmogenic right ventricular cardiomyopathy, or ARVC) is caused by mutations in desmosomal proteins. The question arises as to the mechanisms by which mutations in mechanical junctions, affect the rhythm of the heart. We have proposed that a component of the arrhythmogenic substrate may include changes in the function of both, gap junctions and sodium channels. Here, we review the relevant literature on this subject.
PMID: 22407454
ISSN: 0172-0643
CID: 171552

Uptake of copper from plasma proteins in cells where expression of CTR1 has been modulated

Kidane, Theodros Z; Farhad, Ramin; Lee, Kyoung Jin; Santos, Abraham; Russo, Eric; Linder, Maria C
Plasma proteins rather than amino acid chelates are the direct sources of copper for mammalian cells. In continuing studies on the mechanisms by which albumin and transcuprein deliver copper and the potential involvement of CTR1, rates of uptake from these proteins and Cu-histidine were compared in cells with/without CTR1 knockdown or knockout. siRNA knocked down expression of CTR1 mRNA 60-85% in human mammary epithelial and hepatic cell models, but this had little or no effect on uptake of 1 muM Cu(II) attached to pure human albumin or alpha-2-macroglobulin. Mouse embryonic fibroblasts that did/did not express Ctr1 took up Cu(II) bound to albumin about as readily as from the histidine complex at physiological concentrations and by a single saturable process. Uptake from mouse albumin achieved a 2-4-fold higher Vmax (with a lower Km) than from heterologous human albumin. Maximum uptake rates from Cu(I)-histidine were >12-fold higher (with higher Km) than for Cu(II), suggesting mediation by a reductase. The presence of cell surface Cu(II) and Fe(III) reductase activity responding only slightly to dehydroascorbate was verified. Excess Fe(III) inhibited uptake from albumin-Cu(II). Ag(I) also inhibited, but kinetics were not or un-competitive. In general there was little difference in rates/kinetics of uptake in the Ctr1+/+ and -/- cells. Endocytosis was not involved. We conclude that plasma proteins deliver Cu(II) to homologous cells with greater efficiency than ionic copper at physiological concentrations, probably through the mediation of a Steap Cu(II)-reductase, and confirm the existence of an additional copper uptake system in mammalian cells.
PMID: 22354499
ISSN: 0966-0844
CID: 281162

Myosin II is a negative regulator of oligodendrocyte morphological differentiation

Wang, Haibo; Rusielewicz, Tomasz; Tewari, Ambika; Leitman, Ellen M; Einheber, Steven; Melendez-Vasquez, Carmen V
During their development as myelinating cells, oligodendrocyte progenitors (OPC) undergo dramatic changes in the organization of their cytoskeleton. These changes involve an increase in cell branching and in lamella extension, which is important for the ability of oligodendrocytes to myelinate multiple axons in the CNS. We have previously shown that the levels of the actin-associated motor protein nonmuscle myosin II (NMII) decrease as oligodendrocyte differentiate and that inhibition of NMII activity increases branching and myelination, suggesting that NMII is a negative regulator of oligodendrocyte differentiation. In agreement with this interpretation, we have found that overexpression of NMII prevents oligodendrocyte branching and differentiation and that OPC maturation is accelerated in NMII knockout mice as shown by a significant increase in the percentage of mature MBP(+) cells. Although several pathways have been implicated in oligodendrocyte morphogenesis, their specific contribution to the regulation of NMII activity has not been directly examined. We tested the hypothesis that the activity of NMII in OPC is controlled by Fyn kinase via downregulation of RhoA-ROCK-NMII phosphorylation. We found that treatment with PP2 or knockdown of Fyn using siRNA prevents the decrease in myosin phosphorylation normally observed during OPC differentiation and that the inhibition of branching induced by overexpression of constitutively active RhoA can be reversed by treatment with Y27632 or blebbistatin. Taken together, our results demonstrate that Fyn kinase downregulates NMII activity, thus promoting oligodendrocyte morphological differentiation.
PMCID:3370114
PMID: 22437915
ISSN: 0360-4012
CID: 939082

Genetic diversity analyses of antimicrobial resistance genes in clinical Chryseobacterium meningosepticum isolated from Hefei, China [Letter]

Lin, Xiang-Hong; Xu, Yuan-Hong; Sun, Xiao-Hong; Huang, Ying; Li, Jia-Bing
PMID: 22612901
ISSN: 0924-8579
CID: 830222