Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14178


Vitiligo-Inducing Phenols Activate the Unfolded Protein Response in Melanocytes Resulting in Upregulation of IL6 and IL8

Toosi, Siavash; Orlow, Seth J; Manga, Prashiela
Vitiligo is characterized by depigmented skin patches caused by loss of epidermal melanocytes. Oxidative stress may have a role in vitiligo onset, while autoimmunity contributes to disease progression. In this study, we sought to identify mechanisms that link disease triggers and spreading of lesions. A hallmark of melanocytes at the periphery of vitiligo lesions is dilation of the endoplasmic reticulum (ER). We hypothesized that oxidative stress results in redox disruptions that extend to the ER, causing accumulation of misfolded peptides, which activates the unfolded protein response (UPR). We used 4-tertiary butyl phenol and monobenzyl ether of hydroquinone, known triggers of vitiligo. We show that expression of key UPR components, including the transcription factor X-box-binding protein 1 (XBP1), is increased following exposure of melanocytes to phenols. XBP1 activation increases production of immune mediators IL6 and IL8. Co-treatment with XBP1 inhibitors reduced IL6 and IL8 production induced by phenols, while overexpression of XBP1 alone increased their expression. Thus, melanocytes themselves produce cytokines associated with activation of an immune response following exposure to chemical triggers of vitiligo. These results expand our understanding of the mechanisms underlying melanocyte loss in vitiligo and pathways linking environmental stressors and autoimmunity.Journal of Investigative Dermatology advance online publication, 14 June 2012; doi:10.1038/jid.2012.181.
PMCID:3443495
PMID: 22696056
ISSN: 0022-202x
CID: 174329

Image analysis and length estimation of biomolecules using AFM

Sundstrom, Andrew; Cirrone, Silvio; Paxia, Salvatore; Hsueh, Carlin; Kjolby, Rachel; Gimzewski, James K; Reed, Jason; Mishra, Bud
There are many examples of problems in pattern analysis for which it is often possible to obtain systematic characterizations, if in addition a small number of useful features or parameters of the image are known a priori or can be estimated reasonably well. Often the relevant features of a particular pattern analysis problem are easy to enumerate, as when statistical structures of the patterns are well understood from the knowledge of the domain. We study a problem from molecular image analysis, where such a domain-dependent understanding may be lacking to some degree and the features must be inferred via machine-learning techniques. In this paper, we propose a rigorous, fully-automated technique for this problem. We are motivated by an application of atomic force microscopy (AFM) image processing needed to solve a central problem in molecular biology, aimed at obtaining the complete transcription profile of a single cell, a snapshot that shows which genes are being expressed and to what degree. Reed et al (Single molecule transcription profiling with AFM, Nanotechnology, 18:4, 2007) showed the transcription profiling problem reduces to making high-precision measurements of biomolecule backbone lengths, correct to within 20-25 bp (6-7.5 nm). Here we present an image processing and length estimation pipeline using AFM that comes close to achieving these measurement tolerances. In particular, we develop a biased length estimator on trained coefficients of a simple linear regression model, biweighted by a Beaton-Tukey function, whose feature universe is constrained by James-Stein shrinkage to avoid overfitting. In terms of extensibility and addressing the model selection problem, this formulation subsumes the models we studied.
PMCID:4207372
PMID: 22759526
ISSN: 1558-0032
CID: 1684862

Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans

Ochi, Atsuo; Graffeo, Christopher S; Zambirinis, Constantinos P; Rehman, Adeel; Hackman, Michael; Fallon, Nina; Barilla, Rocky M; Henning, Justin R; Jamal, Mohsin; Rao, Raghavendra; Greco, Stephanie; Deutsch, Michael; Medina-Zea, Marco V; Bin Saeed, Usama; Ego-Osuala, Melvin O; Hajdu, Cristina; Miller, George
Pancreatic ductal adenocarcinoma is an aggressive cancer that interacts with stromal cells to produce a highly inflammatory tumor microenvironment that promotes tumor growth and invasiveness. The precise interplay between tumor and stroma remains poorly understood. TLRs mediate interactions between environmental stimuli and innate immunity and trigger proinflammatory signaling cascades. Our finding that TLR7 expression is upregulated in both epithelial and stromal compartments in human and murine pancreatic cancer led us to postulate that carcinogenesis is dependent on TLR7 signaling. In a mouse model of pancreatic cancer, TLR7 ligation vigorously accelerated tumor progression and induced loss of expression of PTEN, p16, and cyclin D1 and upregulation of p21, p27, p53, c-Myc, SHPTP1, TGF-beta, PPARgamma, and cyclin B1. Furthermore, TLR7 ligation induced STAT3 activation and interfaced with Notch as well as canonical NF-kappaB and MAP kinase pathways, but downregulated expression of Notch target genes. Moreover, blockade of TLR7 protected against carcinogenesis. Since pancreatic tumorigenesis requires stromal expansion, we proposed that TLR7 ligation modulates pancreatic cancer by driving stromal inflammation. Accordingly, we found that mice lacking TLR7 exclusively within their inflammatory cells were protected from neoplasia. These data suggest that targeting TLR7 holds promise for treatment of human pancreatic cancer.
PMCID:3484447
PMID: 23023703
ISSN: 0021-9738
CID: 210732

Snail-dependent repression of the RhoGEF pebble is required for gastrulation consistency in Drosophila melanogaster

Murray, Michael J; Southall, Tony D; Liu, Wenjie; Fraval, Hamilton; Lorensuhewa, Nirmal; Brand, Andrea H; Saint, Robert
The Rho GTP exchange factor, Pebble (Pbl), long recognised as an essential activator of Rho during cytokinesis, also regulates mesoderm migration at gastrulation. Like other cell cycle components, pbl expression patterns broadly correlate with proliferative tissue. Surprisingly, in spite of its role in the early mesoderm, pbl is downregulated in the presumptive mesoderm before ventral furrow formation. Here, we show that this mesoderm-specific repression of pbl is dependent on the transcriptional repressor Snail (Sna). pbl repression was lost in sna mutants but was unaffected when Sna was ectopically expressed, showing that Sna is necessary, but not sufficient, for pbl repression. Using DamID, the first intron of pbl was identified as a Sna-binding region. Nine sites with the Sna-binding consensus motif CAGGT[GA] were identified in this intron. Mutating these to TAGGC[GA] abolished the ventral repression of pbl. Surprisingly, Sna-dependent repression of pbl was not essential for viability or fertility. Loss of repression did, however, increase the frequency of low-penetrance gastrulation defects. Consistent with this, expression of a pbl-GFP transgene in the presumptive mesoderm generated similar gastrulation defects. Finally, we show that a cluster of Snail-binding sites in the middle of the first intron of pbl orthologues is a conserved feature in the other 11 sequenced Drosophila species. We conclude that pbl levels are precisely regulated to ensure that there is enough protein available for its role in early mesoderm development but not so much as to inhibit the orderly progression of gastrulation.
PMCID:3644191
PMID: 22945369
ISSN: 1432-041x
CID: 5193182

Epidemiology and echinocandin susceptibility of Candida parapsilosis sensu lato species isolated from bloodstream infections at a Spanish university hospital

Garcia-Effron, Guillermo; Canton, Emilia; Peman, Javier; Dilger, Amanda; Roma, Eva; Perlin, David S
OBJECTIVES: The aims of this work were to study the epidemiological profiles, differences in echinocandin susceptibilities and clinical relevance of the Candida parapsilosis sensu lato species isolated from proven fungaemia cases at La Fe University Hospital of Valencia (Spain) from 1995 to 2007. RESULTS: The prevalence of these species was: C. parapsilosis sensu stricto, 74.4%; Candida orthopsilosis, 23.54%; and Candida metapsilosis, 2.05%. The incidence of the species complex as agents of fungaemia remained stationary until 2005 and doubled in 2006. The incidence of C. orthopsilosis showed an increasing trend during the study period, while C. parapsilosis sensu stricto incidence diminished. Also, an important epidemiological change was observed starting in 2004, when 86.5% of the C. parapsilosis sensu lato strains were found in adult patients, while before that year only 13.5% of the isolates were found in this population. CONCLUSIONS: Echinocandin drug susceptibility testing using the CLSI M27-A3 document showed a wide range of MIC values (0.015-4 mg/L), with micafungin being the most potent in vitro inhibitor followed by anidulafungin and caspofungin (MIC geometric mean of 0.68, 0.74 and 0.87 mg/L, respectively). C. metapsilosis was the most susceptible species of the complex to anidulafungin and micafungin in vitro (MIC(50) for anidulafungin and micafungin: 0.06 mg/L), while there were no differences between C. parapsilosis sensu lato species when caspofungin MIC(50)s were compared (MIC(50) 1.00 mg/L). Differences in caspofungin in vitro susceptibility were observed between the different clinical service departments of La Fe Hospital.
PMCID:3468080
PMID: 22868644
ISSN: 0305-7453
CID: 309642

Sulforaphane synergistically enhances the cytotoxicity of arsenic trioxide in multiple myeloma cells via stress-mediated pathways

Doudican, Nicole A; Wen, Shih Ya; Mazumder, Amitabha; Orlow, Seth J
Persistent paraprotein production in plasma cells necessitates a highly developed rough endoplasmic reticulum (ER) that is unusually susceptible to perturbations in protein synthesis. This biology is believed to account for the exquisite sensitivity of multiple myeloma (MM) to the proteasomal inhibitor bortezomib (BTZ). Despite remarkable response rates to BTZ in MM, BTZ carries the potential for serious side-effects and development of resistance. We, therefore, sought to identify therapeutic combinations that effectively disrupt proteostasis in order to provide new potential treatments for MM. We found that sulforaphane, a dietary isothiocyanate found in cruciferous vegetables, inhibits TNFalpha-induced Ikappabeta proteasomal degradation in a manner similar to BTZ. Like BTZ, sulforaphane synergistically enhances the cytotoxicity of arsenic trioxide (ATO), an agent with clinical activity in MM. ATO and sulforaphane co-treatment augmented apoptotic induction as demonstrated by cleavage of caspase-3, -4 and PARP. The enhanced apoptotic response was dependent upon production of reactive oxygen species (ROS) as demonstrated by glutathione depletion and partial inhibition of the apoptotic cascade after pretreatment with the radical scavenger N-acetyl-cysteine (NAC). Combination treatment resulted in enhanced ER stress signaling and activation of the unfolded protein response (UPR), indicative of perturbation of proteostasis. Specifically, combination treatment caused elevated expression of the molecular chaperone HSP90 (heat shock protein 90) along with increased PERK (protein kinase RNA-like endoplasmic reticulum kinase) and eIF2alpha phosphorylation and XBP1 (X-box binding protein 1) splicing, key indicators of UPR activation. Moreover, increased splicing of XBP1 was apparent upon combination treatment compared to treatment with either agent alone. Sulforaphane in combination with ATO effectively disrupts protein homeostasis through ROS generation and induction of ER stress to culminate in inhibition of protein secretion and apoptotic induction in MM. Our results suggest that sulforaphane deserves further investigation in combination with ATO in the treatment of MM.
PMCID:3981004
PMID: 22922937
ISSN: 1021-335x
CID: 178061

Attempted validation of ICRP 30 and ICRP 66 respiratory models

Harley, N H; Fisenne, I M; Robbins, E S
The validation of human biological models for inhaled radionuclides is nearly impossible. Requirements for validation are: (1) the measurement of the relevant human tissue data and (2) valid exposure measurements over the interval known to apply to tissue uptake. Two lung models, ICRP 30(( 1)) and ICRP 66(( 2)), are widely used to estimate lung doses following acute occupational or environmental exposure. Both ICRP 30 and 66 lung models are structured to estimate acute rather than chronic exposure. Two sets of human tissue measurements are available: (210)Po accumulated in tissue from inhaled cigarettes and ingested in diet and airborne global fallout (239,240)Pu accumulated in the lungs from inhalation. The human tissue measurements include pulmonary and bronchial tissue in smokers, ex-smokers and non-smokers analysed radiochemically for (210)Po, and pulmonary, bronchial and lymph nodes analysed for (239,240)Pu in lung tissue collected by the New York City Medical Examiner from 1972 to 1974. Both ICRP 30 and 66 models were included in a programme to accommodate chronic uptake. Neither lung model accurately described the estimated tissue concentrations but was within a factor of 2 from measurements. ICRP 66 was the exception and consistently overestimated the bronchial concentrations probably because of its assumption of an overly long 23-d clearance half-time in the bronchi and bronchioles.
PMID: 22923255
ISSN: 0144-8420
CID: 184792

A virus-like particle that elicits cross-reactive antibodies to the conserved stem of influenza virus hemagglutinin

Schneemann, Anette; Speir, Jeffrey A; Tan, Gene S; Khayat, Reza; Ekiert, Damian C; Matsuoka, Yumiko; Wilson, Ian A
The discovery of broadly neutralizing antibodies that recognize highly conserved epitopes in the membrane-proximal region of influenza virus hemagglutinin (HA) has revitalized efforts to develop a universal influenza virus vaccine. This effort will likely require novel immunogens that contain these epitopes but lack the variable and immunodominant epitopes located in the globular head of HA. As a first step toward developing such an immunogen, we investigated whether the 20-residue A-helix of the HA2 chain that forms the major component of the epitope of broadly neutralizing antibodies CR6261, F10, and others is sufficient by itself to elicit antibodies with similarly broad antiviral activity. Here, we report the multivalent display of the A-helix on icosahedral virus-like particles (VLPs) derived from the capsid of Flock House virus. Mice immunized with VLPs displaying 180 copies/particle of the A-helix produced antibodies that recognized trimeric HA and the elicited antibodies had binding characteristics similar to those of CR6261 and F10: they recognized multiple HA subtypes from group 1 but not from group 2. However, the anti-A-helix antibodies did not neutralize influenza virus. These results indicate that further engineering of the transplanted peptide is required and that display of additional regions of the epitope may be necessary to achieve protection.
PMCID:3486276
PMID: 22896619
ISSN: 1098-5514
CID: 2291382

Regulation of angiotensin II type 2 receptor gene expression in the adrenal medulla by acute and repeated immobilization stress

Nostramo, Regina; Tillinger, Andrej; Saavedra, Juan M; Kumar, Ashok; Pandey, Varunkumar; Serova, Lidia; Kvetnansky, Richard; Sabban, Esther L
While the renin-angiotensin system is important for adrenomedullary responses to stress, the involvement of specific angiotensin II (Ang II) receptor subtypes is unclear. We examined gene expression changes of angiotensin II type 1A (AT(1A)) and type 2 (AT(2)) receptors in rat adrenal medulla in response to immobilization stress (IMO). AT(2) receptor mRNA levels decreased immediately after a single 2-h IMO. Repeated IMO also decreased AT(2) receptor mRNA levels, but the decline was more transient. AT(1A) receptor mRNA levels were unaltered with either single or repeated IMO, although binding was increased following repeated IMO. These effects of stress on Ang II receptor expression may alter catecholamine biosynthesis, as tyrosine hydroxylase and dopamine beta-hydroxylase mRNA levels in PC12 cells are decreased with Ang II treatment in the presence of ZD7155 (AT(1) receptor antagonist) or with CGP42112 (AT(2) receptor agonist) treatment. Involvement of stress-triggered activation of the hypothalamic-pituitary-adrenocortical or sympathoadrenal axis in AT(2) receptor downregulation was examined. Cultured cells treated with the synthetic glucocorticoid dexamethasone displayed a transcriptionally mediated decrease in AT(2) receptor mRNA levels. However, glucocorticoids are not required for the immediate stress-triggered decrease in AT(2) receptor gene expression, as demonstrated in corticotropin-releasing hormone knockout (Crh KO) mice and hypophysectomized rats, although they can regulate basal gene expression. cAMP and pituitary adenylate cyclase-activating polypeptide also reduced AT(2) receptor gene expression and may mediate this response. Overall, the effects of stress on adrenomedullary AT(1A) and AT(2) receptor expression may contribute to allostatic changes, such as regulation of catecholamine biosynthesis.
PMCID:3474336
PMID: 22911895
ISSN: 0022-0795
CID: 606532

The Endosomal Protein-Sorting Receptor Sortilin Has a Role in Trafficking alpha-1 Antitrypsin

Gelling, Cristy L; Dawes, Ian W; Perlmutter, David H; Fisher, Edward A; Brodsky, Jeffrey L
Up to 1 in 3000 individuals in the United States have alpha-1 antitrypsin deficiency, and the most common cause of this disease is homozygosity for the antitrypsin-Z variant (ATZ). ATZ is inefficiently secreted, resulting in protein deficiency in the lungs and toxic polymer accumulation in the liver. However, only a subset of patients suffer from liver disease, suggesting that genetic factors predispose individuals to liver disease. To identify candidate factors, we developed a yeast ATZ expression system that recapitulates key features of the disease-causing protein. We then adapted this system to screen the yeast deletion mutant collection to identify conserved genes that affect ATZ secretion and thus may modify the risk for developing liver disease. The results of the screen and associated assays indicate that ATZ is degraded in the vacuole after being routed from the Golgi. In fact, one of the strongest hits from our screen was Vps10, which can serve as a receptor for the delivery of aberrant proteins to the vacuole. Because genome-wide association studies implicate the human Vps10 homolog, sortilin, in cardiovascular disease, and because hepatic cell lines that stably express wild-type or mutant sortilin were recently established, we examined whether ATZ levels and secretion are affected by sortilin. As hypothesized, sortilin function impacts the levels of secreted ATZ in mammalian cells. This study represents the first genome-wide screen for factors that modulate ATZ secretion and has led to the identification of a gene that may modify disease severity or presentation in individuals with ATZ-associated liver disease.
PMCID:3522165
PMID: 22923381
ISSN: 0016-6731
CID: 185572