Searched for: school:SOM
Department/Unit:Neuroscience Institute
Thalamocortical input onto layer 5 pyramidal neurons measured using quantitative large-scale array tomography
Rah, Jong-Cheol; Bas, Erhan; Colonell, Jennifer; Mishchenko, Yuriy; Karsh, Bill; Fetter, Richard D; Myers, Eugene W; Chklovskii, Dmitri B; Svoboda, Karel; Harris, Timothy D; Isaac, John T R
The subcellular locations of synapses on pyramidal neurons strongly influences dendritic integration and synaptic plasticity. Despite this, there is little quantitative data on spatial distributions of specific types of synaptic input. Here we use array tomography (AT), a high-resolution optical microscopy method, to examine thalamocortical (TC) input onto layer 5 pyramidal neurons. We first verified the ability of AT to identify synapses using parallel electron microscopic analysis of TC synapses in layer 4. We then use large-scale array tomography (LSAT) to measure TC synapse distribution on L5 pyramidal neurons in a 1.00 x 0.83 x 0.21 mm(3) volume of mouse somatosensory cortex. We found that TC synapses primarily target basal dendrites in layer 5, but also make a considerable input to proximal apical dendrites in L4, consistent with previous work. Our analysis further suggests that TC inputs are biased toward certain branches and, within branches, synapses show significant clustering with an excess of TC synapse nearest neighbors within 5-15 mum compared to a random distribution. Thus, we show that AT is a sensitive and quantitative method to map specific types of synaptic input on the dendrites of entire neurons. We anticipate that this technique will be of wide utility for mapping functionally-relevant anatomical connectivity in neural circuits.
PMCID:3824245
PMID: 24273494
ISSN: 1662-5110
CID: 1479952
PUNCH-P for global translatome profiling: Methodology, insights and comparison to other techniques
Aviner, Ranen; Geiger, Tamar; Elroy-Stein, Orna
Regulation of mRNA translation is a major modulator of gene expression, allowing cells to fine tune protein levels during growth and differentiation and in response to physiological signals and environmental changes. Mass-spectrometry and RNA-sequencing methods now enable global profiling of the translatome, but these still involve significant analytical and economical limitations. We developed a novel system-wide proteomic approach for direct monitoring of translation, termed PUromycin-associated Nascent CHain Proteomics (PUNCH-P), which is based on the recovery of ribosome-nascent chain complexes from cells or tissues followed by incorporation of biotinylated puromycin into newly-synthesized proteins. Biotinylated proteins are then purified by streptavidin and analyzed by mass-spectrometry. Here we present an overview of PUNCH-P, describe other methodologies for global translatome profiling (pSILAC, BONCAT, TRAP/Ribo-tag, Ribo-seq) and provide conceptual comparisons between these methods. We also show how PUNCH-P data can be combined with mRNA measurements to determine relative translation efficiency for specific mRNAs.
PMCID:4718054
PMID: 26824027
ISSN: 2169-0731
CID: 2044072
The neurobiology of context-dependent valuation and choice
Chapter by: Louie, Kenway; de Martino, B
in: Neuroeconomics: Decision Making and the Brain by
[S.l. : s.n.], 2013
pp. ?-?
ISBN: 9780124160088
CID: 3702932
Informationist Role: Clinical Data Management in Auditory Research
Hanson, Karen L; Bakker, Theodora A; Svirsky, Mario A; Neuman, Arlene C; Rambo, Neil
Informationists at NYU Health Sciences Libraries (NYUHSL) successfully applied for a NLM supplement to a translational research grant obtained by PIs in the NYU School of Medicine Department of Otolaryngology titled, "Clinical Management of Cochlear Implant Patients with Contralateral Hearing Aids". The grant involves development of evidence-based guidelines for post-implant management of patients with bimodal cochlear implants. The PIs are also seeking to acquire new data sets to merge with grant-generated data. In light of the shifting data requirements, and the potential introduction of additional datasets, informationists will evaluate and restructure the data model and data entry tool. Report queries will be refined for the new data model and options for a query tool appropriate for users unfamiliar with query languages will be assessed and implemented. The services offered through this supplement represent the deepest and most detailed data management support offered by NYUHSL to date. The components of the supplement are being analyzed as a pilot of a broader offering of these data management services
ORIGINAL:0008126
ISSN: 2161-3974
CID: 306482
Genetic and functional modularity of hox activities in the specification of limb-innervating motor neurons
Lacombe, Julie; Hanley, Olivia; Jung, Heekyung; Philippidou, Polyxeni; Surmeli, Gulsen; Grinstein, Jonathan; Dasen, Jeremy S
A critical step in the assembly of the neural circuits that control tetrapod locomotion is the specification of the lateral motor column (LMC), a diverse motor neuron population targeting limb musculature. Hox6 paralog group genes have been implicated as key determinants of LMC fate at forelimb levels of the spinal cord, through their ability to promote expression of the LMC-restricted genes Foxp1 and Raldh2 and to suppress thoracic fates through exclusion of Hoxc9. The specific roles and mechanisms of Hox6 gene function in LMC neurons, however, are not known. We show that Hox6 genes are critical for diverse facets of LMC identity and define motifs required for their in vivo specificities. Although Hox6 genes are necessary for generating the appropriate number of LMC neurons, they are not absolutely required for the induction of forelimb LMC molecular determinants. In the absence of Hox6 activity, LMC identity appears to be preserved through a diverse array of Hox5-Hox8 paralogs, which are sufficient to reprogram thoracic motor neurons to an LMC fate. In contrast to the apparently permissive Hox inputs to early LMC gene programs, individual Hox genes, such as Hoxc6, have specific roles in promoting motor neuron pool diversity within the LMC. Dissection of motifs required for Hox in vivo specificities reveals that either cross-repressive interactions or cooperativity with Pbx cofactors are sufficient to induce LMC identity, with the N-terminus capable of promoting columnar, but not pool, identity when transferred to a heterologous homeodomain. These results indicate that Hox proteins orchestrate diverse aspects of cell fate specification through both the convergent regulation of gene programs regulated by many paralogs and also more restricted actions encoded through specificity determinants in the N-terminus.
PMCID:3554521
PMID: 23359544
ISSN: 1553-7390
CID: 214142
Brain extracellular space: geometry, matrix and physiological importance
Kamali-Zare, Padideh; Nicholson, Charles
PMCID:4202579
PMID: 25337358
ISSN: 2008-126x
CID: 1315512
Challenges and opportunities in optochemical genetics
Chapter by: Isacoff, E; Kramer, R; Trauner, Dirk
in: Optogenetics by Hegemann, Peter; Sigrist, Stephan [Eds]
Berlin : De Gruyter, 2013
pp. 35-46
ISBN: 3110270722
CID: 2487922
Molecular switches and cages
Trauner, Dirk
Frankfurt am Main : Beilstein-Inst, 2013
Extent: 225 p.
ISBN: n/a
CID: 2487942
The influence of ectopic migration of granule cells into the hilus on dentate gyrus-CA3 function
Myers, Catherine E; Bermudez-Hernandez, Keria; Scharfman, Helen E
Postnatal neurogenesis of granule cells (GCs) in the dentate gyrus (DG) produces GCs that normally migrate from the subgranular zone to the GC layer. However, GCs can mismigrate into the hilus, the opposite direction. Previous descriptions of these hilar ectopic GCs (hEGCs) suggest that they are rare unless there are severe seizures. However, it is not clear if severe seizures are required, and it also is unclear if severe seizures are responsible for the abnormalities of hEGCs, which include atypical dendrites and electrophysiological properties. Here we show that large numbers of hEGCs develop in a transgenic mouse without severe seizures. The mice have a deletion of BAX, which normally regulates apoptosis. Surprisingly, we show that hEGCs in the BAX(-/-) mouse have similar abnormalities as hEGCs that arise after severe seizures. We next asked if there are selective effects of hEGCs, i.e., whether a robust population of hEGCs would have any effect on the DG if they were induced without severe seizures. Indeed, this appears to be true, because it has been reported that BAX(-/-) mice have defects in a behavior that tests pattern separation, which depends on the DG. However, inferring functional effects of hEGCs is difficult in mice with a constitutive BAX deletion because there is decreased apoptosis in and outside the DG. Therefore, a computational model of the normal DG and hippocampal subfield CA3 was used. Adding a small population of hEGCs (5% of all GCs), with characteristics defined empirically, was sufficient to disrupt a simulation of pattern separation and completion. Modeling results also showed that effects of hEGCs were due primarily to "backprojections" of CA3 pyramidal cell axons to the hilus. The results suggest that hEGCs can develop for diverse reasons, do not depend on severe seizures, and a small population of hEGCs may impair DG-dependent function.
PMCID:3695928
PMID: 23840835
ISSN: 1932-6203
CID: 829822
A 1H NMR assay for measuring the photostationary States of photoswitchable ligands
Banghart, Matthew R; Trauner, Dirk
Incorporation of photoisomerizable chromophores into small molecule ligands represents a general approach for reversibly controlling protein function with light. Illumination at different wavelengths produces photostationary states (PSSs) consisting of different ratios of photoisomers. Thus optimal implementation of photoswitchable ligands requires knowledge of their wavelength sensitivity. Using an azobenzene-based ion channel blocker as an example, this protocol describes a (1)H NMR assay that can be used to precisely determine the isomeric content of photostationary states (PSSs) as a function of illumination wavelength. Samples of the photoswitchable ligand are dissolved in deuterated water and analyzed by UV/VIS spectroscopy to identify the range of illumination wavelengths that produce PSSs. The PSSs produced by these wavelengths are quantified using (1)H NMR spectroscopy under continuous irradiation through a monochromator-coupled fiber-optic cable. Because aromatic protons of azobenzene trans and cis isomers exhibit sufficiently different chemical shifts, their relative abundances at each PSS can be readily determined by peak integration. Constant illumination during spectrum acquisition is essential to accurately determine PSSs from molecules that thermally relax on the timescale of minutes or faster. This general protocol can be readily applied to any photoswitch that exhibits distinct (1)H NMR signals in each photoisomeric state.
PMID: 23494375
ISSN: 1940-6029
CID: 2484842