Searched for: school:SOM
Department/Unit:Neuroscience Institute
Holographic optogenetic stimulation of patterned neuronal activity for vision restoration
Reutsky-Gefen, Inna; Golan, Lior; Farah, Nairouz; Schejter, Adi; Tsur, Limor; Brosh, Inbar; Shoham, Shy
When natural photoreception is disrupted, as in outer-retinal degenerative diseases, artificial stimulation of surviving nerve cells offers a potential strategy for bypassing compromised neural circuits. Recently, light-sensitive proteins that photosensitize quiescent neurons have generated unprecedented opportunities for optogenetic neuronal control, inspiring early development of optical retinal prostheses. Selectively exciting large neural populations are essential for eliciting meaningful perceptions in the brain. Here we provide the first demonstration of holographic photo-stimulation strategies for bionic vision restoration. In blind retinas, we demonstrate reliable holographically patterned optogenetic stimulation of retinal ganglion cells with millisecond temporal precision and cellular resolution. Holographic excitation strategies could enable flexible control over distributed neuronal circuits, potentially paving the way towards high-acuity vision restoration devices and additional medical and scientific neuro-photonics applications.
PMID: 23443537
ISSN: 2041-1723
CID: 1703622
Minimal change disease and IgA deposition: separate entities or common pathophysiology?
Oberweis, Brandon S; Mattoo, Aditya; Wu, Ming; Goldfarb, David S
Introduction. Minimal Change Disease (MCD) is the most common cause of nephrotic syndrome in children, while IgA nephropathy is the most common cause of glomerulonephritis worldwide. MCD is responsive to glucocorticoids, while the role of steroids in IgA nephropathy remains unclear. We describe a case of two distinct clinical and pathological findings, raising the question of whether MCD and IgA nephropathy are separate entities or if there is a common pathophysiology. Case Report. A 19-year old man with no medical history presented to the Emergency Department with a 20-day history of anasarca and frothy urine, BUN 68 mg/dL, Cr 2.3 mg/dL, urinalysis 3+ RBCs, 3+ protein, and urine protein : creatinine ratio 6.4. Renal biopsy revealed hypertrophic podocytes on light microscopy, podocyte foot process effacement on electron microscopy, and immunofluorescent mesangial staining for IgA. The patient was started on prednisone and exhibited dramatic improvement. Discussion. MCD typically has an overwhelming improvement with glucocorticoids, while the resolution of IgA nephropathy is rare. Our patient presented with MCD with the uncharacteristic finding of hematuria. Given the improvement with glucocorticoids, we raise the question of whether there is a shared pathophysiologic component of these two distinct clinical diseases that represents a clinical variant.
PMCID:3914242
PMID: 24527245
ISSN: 2090-665x
CID: 811172
Genetic and functional modularity of hox activities in the specification of limb-innervating motor neurons
Lacombe, Julie; Hanley, Olivia; Jung, Heekyung; Philippidou, Polyxeni; Surmeli, Gulsen; Grinstein, Jonathan; Dasen, Jeremy S
A critical step in the assembly of the neural circuits that control tetrapod locomotion is the specification of the lateral motor column (LMC), a diverse motor neuron population targeting limb musculature. Hox6 paralog group genes have been implicated as key determinants of LMC fate at forelimb levels of the spinal cord, through their ability to promote expression of the LMC-restricted genes Foxp1 and Raldh2 and to suppress thoracic fates through exclusion of Hoxc9. The specific roles and mechanisms of Hox6 gene function in LMC neurons, however, are not known. We show that Hox6 genes are critical for diverse facets of LMC identity and define motifs required for their in vivo specificities. Although Hox6 genes are necessary for generating the appropriate number of LMC neurons, they are not absolutely required for the induction of forelimb LMC molecular determinants. In the absence of Hox6 activity, LMC identity appears to be preserved through a diverse array of Hox5-Hox8 paralogs, which are sufficient to reprogram thoracic motor neurons to an LMC fate. In contrast to the apparently permissive Hox inputs to early LMC gene programs, individual Hox genes, such as Hoxc6, have specific roles in promoting motor neuron pool diversity within the LMC. Dissection of motifs required for Hox in vivo specificities reveals that either cross-repressive interactions or cooperativity with Pbx cofactors are sufficient to induce LMC identity, with the N-terminus capable of promoting columnar, but not pool, identity when transferred to a heterologous homeodomain. These results indicate that Hox proteins orchestrate diverse aspects of cell fate specification through both the convergent regulation of gene programs regulated by many paralogs and also more restricted actions encoded through specificity determinants in the N-terminus.
PMCID:3554521
PMID: 23359544
ISSN: 1553-7390
CID: 214142
Challenges and opportunities in optochemical genetics
Chapter by: Isacoff, E; Kramer, R; Trauner, Dirk
in: Optogenetics by Hegemann, Peter; Sigrist, Stephan [Eds]
Berlin : De Gruyter, 2013
pp. 35-46
ISBN: 3110270722
CID: 2487922
Molecular switches and cages
Trauner, Dirk
Frankfurt am Main : Beilstein-Inst, 2013
Extent: 225 p.
ISBN: n/a
CID: 2487942
Differentiating high and low grade pediatric brain tumors using diffusional kurtosis imaging
Winfeld, M; Jensen, J; Adisetiyo, V; Fieremans, E; Helpern, J; Karajannis, M; Allen, J; Gardner, S; Milla, S
The purpose of this study is to determine the accuracy with which a non-Gaussian measure of diffusion, mean kurtosis (MK), predicts the histologic grade of pediatric brain tumors. After institutional review board approval, 21 World Health Organization (WHO) grade I, 7 WHO grade II, and 7 WHO grade IV pathologically-proven intracranial pediatric malignancies were retrospectively reviewed for preoperative diffusional kurtosis imaging. Multiple diffusion metrics of the tumors including MK, mean diffusivity (MD) and fractional anisotropy (FA) were determined. Comparisons between groups were performed using the Mann-Whitney test (p < .05). Receiver operating characteristics analysis was done to assess accuracy of each metric in predicting histologic grade. MK was significantly higher for grade IV neoplasms (0.97, p < 0.0004) than grade I (0.62) or grade II (0.67) tumors. MD was significantly higher for grade I (1.43) compared with grade IV neoplasms (1.07, p < 0.018), however not for grade II (1.43) compared with grade IV (p < 0.08) tumors. FA did not differ significantly between grades. Area under the receiver operating characteristic curve was highest for MK (0.94) and lower for MD (0.89). FA performed only slightly better than chance (0.54). MK is an accurate diffusion metric for predicting histologic grade of pediatric brain tumors, consistent with conclusions from prior studies demonstrating similar results in adult populations
SCOPUS:85013596072
ISSN: 1309-6680
CID: 2525792
MR-guided focused ultrasound technique in functional neurosurgery: targeting accuracy
Moser, David; Zadicario, Eyal; Schiff, Gilat; Jeanmonod, Daniel
BACKGROUND: The purpose of this study was to describe targeting accuracy in functional neurosurgery using incisionless transcranial magnetic resonance (MR)-guided focused ultrasound technology. METHODS: MR examinations were performed before and 2 days after the ultrasound functional neurosurgical treatment to visualize the targets on T2-weighted images and determine their coordinates. Thirty consecutive targets were reconstructed: 18 were in the central lateral nucleus of the medial thalamus (central lateral thalamotomies against neurogenic pain), 1 in the centrum medianum thalamic nucleus (centrum medianum thalamotomy against essential tremor), 10 on the pallido-thalamic tract (pallido-thalamic tractotomies against Parkinson's disease), and 1 on the cerebello-thalamic tract (cerebello-thalamic tractotomy against essential tremor). We describe a method for reconstruction of the lesion coordinates on post-treatment MR images, which were compared with the desired atlas target coordinates. We also calculated the accuracy of the intra-operative target placement, thus allowing to determine the global, planning, and device accuracies. We also estimated the target lesion volume. RESULTS: We found mean absolute global targeting accuracies of 0.44 mm for the medio-lateral dimension (standard deviation 0.35 mm), 0.38 mm for the antero-posterior dimension (standard deviation 0.33 mm), and 0.66 mm for the dorso-ventral dimension (standard deviation 0.37 mm). Out of the 90 measured coordinates, 83 (92.2%) were inside the millimeter domain. The mean three-dimensional (3D) global accuracy was 0.99 mm (standard deviation 0.39 mm). The mean target volumes, reconstructed from surface measurements on 3D T1 series, were 68.5 mm(3) (standard deviation 39.7 mm(3)), and 68.9 mm(3) (standard deviation 40 mm(3)) using an ellipsoidal approximation. CONCLUSION: This study demonstrates a high accuracy of the MR-guided focused ultrasound technique. This high accuracy is due not only to the device qualities but also to the possibility for the operator to perform on-going real-time monitoring of the lesioning process. A precise method for determination of targeting accuracy is an essential component and basic requirement of the functional neurosurgical activity, allowing an on-going control of the performed therapeutic work indispensable for any target efficiency analysis and the maintenance of a low risk profile.
PMCID:3988613
PMID: 24761224
ISSN: 2050-5736
CID: 936782
Immune responses at brain barriers and implications for brain development and neurological function in later life
Stolp, Helen B; Liddelow, Shane A; Sa-Pereira, Ines; Dziegielewska, Katarzyna M; Saunders, Norman R
For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognized that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signaling or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signaling at the brain barriers that may be an important part of the body's response to damage or infection. This signaling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation-induced barrier dysfunction for brain development and subsequent neurological function are also discussed.
PMCID:3750212
PMID: 23986663
ISSN: 1662-5145
CID: 2743422
A 1H NMR assay for measuring the photostationary States of photoswitchable ligands
Banghart, Matthew R; Trauner, Dirk
Incorporation of photoisomerizable chromophores into small molecule ligands represents a general approach for reversibly controlling protein function with light. Illumination at different wavelengths produces photostationary states (PSSs) consisting of different ratios of photoisomers. Thus optimal implementation of photoswitchable ligands requires knowledge of their wavelength sensitivity. Using an azobenzene-based ion channel blocker as an example, this protocol describes a (1)H NMR assay that can be used to precisely determine the isomeric content of photostationary states (PSSs) as a function of illumination wavelength. Samples of the photoswitchable ligand are dissolved in deuterated water and analyzed by UV/VIS spectroscopy to identify the range of illumination wavelengths that produce PSSs. The PSSs produced by these wavelengths are quantified using (1)H NMR spectroscopy under continuous irradiation through a monochromator-coupled fiber-optic cable. Because aromatic protons of azobenzene trans and cis isomers exhibit sufficiently different chemical shifts, their relative abundances at each PSS can be readily determined by peak integration. Constant illumination during spectrum acquisition is essential to accurately determine PSSs from molecules that thermally relax on the timescale of minutes or faster. This general protocol can be readily applied to any photoswitch that exhibits distinct (1)H NMR signals in each photoisomeric state.
PMID: 23494375
ISSN: 1940-6029
CID: 2484842
Optical modulation of neurotransmission using calcium photocurrents through the ion channel LiGluR
Izquierdo-Serra, Merce; Trauner, Dirk; Llobet, Artur; Gorostiza, Pau
A wide range of light-activated molecules (photoswitches and phototriggers) have been used to the study of computational properties of an isolated neuron by acting pre and postsynaptically. However, new tools are being pursued to elicit a presynaptic calcium influx that triggers the release of neurotransmitters, most of them based in calcium-permeable Channelrhodopsin-2 mutants. Here we describe a method to control exocytosis of synaptic vesicles through the use of a light-gated glutamate receptor (LiGluR), which has recently been demonstrated that supports secretion by means of calcium influx in chromaffin cells. Expression of LiGluR in hippocampal neurons enables reversible control of neurotransmission with light, and allows modulating the firing rate of the postsynaptic neuron with the wavelength of illumination. This method may be useful for the determination of the complex transfer function of individual synapses.
PMCID:3604637
PMID: 23519552
ISSN: 1662-5099
CID: 2484822