Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13409


Complex mixture discrimination and the role of contaminants

Lovitz, A M; Sloan, A M; Rennaker, R L; Wilson, D A
Rats were trained in a 2-alternative odor choice task to discriminate between a 10-component odor mixture and the same mixture with one component removed and replaced with 1 of 3 concentrations of a different monomolecular odor (contaminant). All stimuli were presented within a training session, thus the rat essentially had to learn to discriminate the 10-component mixture from "not" the 10-component mixture. Rats performed most poorly discriminating the complete mixture from the mixture with one component removed and no contaminant added. As the concentration of the contaminant increased from 10 ppm to a concentration equal to the other components (100 ppm), discrimination improved linearly. In analyses of individual differences, rats that spent more time in the sampling port (sampling and making a decision) were more accurate than rats that spent less time. Together, these results emphasize the balance between perceptual stability and perceptual discrimination expressed by the olfactory system dealing with dynamic mixtures and the robust effects of contamination on those processes. In addition, they provide further support that modification of sampling/decision time is a strategy used by rats to deal with difficult discriminations of complex odors.
PMCID:3529621
PMID: 22354907
ISSN: 0379-864X
CID: 171525

Schizophrenia, culture and neuropsychology: sensory deficits, language impairments and social functioning in Chinese-speaking schizophrenia patients

Yang L; Chen S; Chen CM; Khan F; Forchelli G; Javitt DC
BACKGROUND: While 20% of schizophrenia patients worldwide speak tonal languages (e.g. Mandarin), studies are limited to Western-language patients. Western-language patients show tonal deficits that are related to impaired emotional processing of speech. However, language processing is minimally affected. In contrast, in Mandarin, syllables are voiced in one of four tones, with word meaning varying accordingly. We hypothesized that Mandarin-speaking schizophrenia patients would show impairments in underlying basic auditory processing that, unlike in Western groups, would relate to deficits in word recognition and social outcomes.MethodAltogether, 22 Mandarin-speaking schizophrenia patients and 44 matched healthy participants were recruited from New York City. The auditory tasks were: (1) tone matching; (2) distorted tunes; (3) Chinese word discrimination; (4) Chinese word identification. Social outcomes were measured by marital status, employment and most recent employment status. RESULTS: Patients showed deficits in tone-matching, distorted tunes, word discrimination and word identification versus controls (all p<0.0001). Impairments in tone-matching across groups correlated with both word identification (p<0.0001) and discrimination (p<0.0001). On social outcomes, tonally impaired patients had 'lower-status' jobs overall when compared with tonally intact patients (p<0.005) and controls (p<0.0001). CONCLUSIONS: Our study is the first to investigate an interaction between neuropsychology and language among Mandarin-speaking schizophrenia patients. As predicted, patients were highly impaired in both tone and auditory word processing, with these two measures significantly correlated. Tonally impaired patients showed significantly worse employment-status function than tonally intact patients, suggesting a link between sensory impairment and employment status outcome. While neuropsychological deficits appear similar cross-culturally, their consequences may be language- and culture-dependent
PMID: 22099474
ISSN: 1469-8978
CID: 150699

Development of biomarkers to chart all Alzheimer's disease stages: the royal road to cutting the therapeutic Gordian Knot

Hampel, Harald; Lista, Simone; Khachaturian, Zaven S
The aim of this perspective article is to stimulate radical shifts in thinking and foster further discussion on the effective discovery, development, validation, and qualification process of biological markers derived from all available technical modalities that meet the complex conceptual and pathophysiological challenges across all stages of the complex, nonlinear, dynamic, and chronically progressive sporadic Alzheimer's disease (AD). This perspective evaluates the current state of the science regarding a broad spectrum of hypothesis-driven and exploratory technologies and "markers" as candidates for all required biomarker functions, in particular, surrogate indicators of adaptive to maladaptive and compensatory to decompensatory, reversible to irreversible brain "systems failure." We stress the future importance of the systems biology (SB) paradigm (next to the neural network paradigm) for substantial progress in AD research. SB represents an integrated and deeper investigation of interacting biomolecules within cells and organisms. This approach has only recently become feasible as high-throughput technologies and mass spectrometric analyses of proteins and lipids, together with rigorous bioinformatics, have evolved. Existing high-content data derived from clinically and experimentally derived neural tissues point to convergent pathophysiological pathways during the course of AD, transcending traditional descriptive studies to reach a more integrated and comprehensive understanding of AD pathophysiology, derived systems biomarkers, and "druggable" system nodes. The discussion is continued on the premise that the lack of integration of advanced biomarker technologies and transfertilization from more mature translational research fields (e.g., oncology, immunology, cardiovascular), which satisfy regulatory requirements for an accurate, sensitive, and well-validated surrogate marker of specific pathophysiological processes and/or clinical outcomes, is a major rate-limiting factor for the successful development and approval of effective treatments for AD prevention. We consider the conceptual, scientific, and technical challenges for the discovery-development-validation-qualification process of biomarker tools and analytical algorithms for detection of the earliest pathophysiological processes in asymptomatic individuals at elevated risk during preclinical stages of AD. The most critical need for rapid translation of putative markers into validated (performance) and standardized (harmonized standard operating procedures) biomarker tools that fulfill regulatory requirements (qualify for use in treatment trials: e.g., safety, target engagement, mechanism of action, enrichment, stratification, secondary and primary outcome, surrogate outcome) is the availability of a large-scale worldwide comprehensive longitudinal database that includes the following cohorts: (a) healthy aging, (b) people at elevated risks (genetic/epigenetic/lifestyle/comorbid conditions), and (c) asymptomatic-preclinical/prodromal-mild cognitive impairment/syndromal mild, moderate, or severe AD. Our proposal, as initial strategic steps for integrating markers into future development of diagnostic and therapy trial technologies, is to work toward: (a) creating the essential research and development infrastructure as an international shared resource, (b) building the organizational structure for managing such a multinational shared resource, and (c) establishing an integrated transsectoral multidisciplinary global network of collaborating investigators to help build and use the shared research resource.
PMID: 22748938
ISSN: 1552-5260
CID: 936592

Ideal current patterns yielding optimal signal-to-noise ratio and specific absorption rate in magnetic resonance imaging: Computational methods and physical insights

Lattanzi R; Sodickson DK
At high and ultra-high magnetic field strengths, understanding interactions between tissues and the electromagnetic fields generated by radiofrequency coils becomes crucial for safe and effective coil design as well as for insight into limits of performance. In this work, we present a rigorous electrodynamic modeling framework, using dyadic Green's functions, to derive the electromagnetic field in homogeneous spherical and cylindrical samples resulting from arbitrary surface currents in the presence or absence of a surrounding radiofrequency shield. We show how to calculate ideal current patterns that result in the highest possible signal-to-noise ratio (ultimate intrinsic signal-to-noise ratio) or the lowest possible radiofrequency power deposition (ultimate intrinsic specific absorption rate) compatible with electrodynamic principles. We identify familiar coil designs within optimal current patterns at low to moderate field strength, thereby establishing and explaining graphically the near-optimality of traditional surface and volume quadrature designs. We also document the emergence of less familiar patterns, e.g., involving substantial electric- as well as magnetic-dipole contributions, at high field strength. Performance comparisons with particular coil array configurations demonstrate that optimal performance may be approached with finite arrays if ideal current patterns are used as a guide for coil design. Magn Reson Med, 2011. (c) 2011 Wiley Periodicals, Inc
PMCID:3374920
PMID: 22127735
ISSN: 1522-2594
CID: 149835

Synthetic approaches toward sesterterpenoids

Hog, Daniel T; Webster, Robert; Trauner, Dirk
Sesterterpenoids account for many bioactive natural products, often with unusual and complex structural features, which makes them attractive targets for synthetic chemists. This review surveys efforts undertaken toward the synthesis of sesterterpenoids, focusing on completed total syntheses and covering ca. 50 natural products in total.
PMID: 22652980
ISSN: 1460-4752
CID: 2484922

Forever young: induced pluripotent stem cells as models of inherited arrhythmias

Park, David S; Fishman, Glenn I
PMCID:3630473
PMID: 22647977
ISSN: 0009-7322
CID: 170424

Stereoselective total syntheses of herbicidin C and aureonuclemycin through late-stage glycosylation

Hager, Dominik; Mayer, Peter; Paulitz, Christian; Tiebes, Jorg; Trauner, Dirk
Better late than never! Two herbicidins, members of an important family of nucleoside antibiotics, have been synthesized for the first time. The route integrates a stereoselective C-glycosylation with several reagent-controlled stereoselective transformations and a surprisingly facile and highly diastereoselective late-stage N-glycosylation.
PMID: 22644891
ISSN: 1521-3773
CID: 2484952

Dynamic FoxG1 Expression Coordinates the Integration of Multipolar Pyramidal Neuron Precursors into the Cortical Plate

Miyoshi, Goichi; Fishell, Gord
Pyramidal cells of the cerebral cortex are born in the ventricular zone and migrate through the intermediate zone to enter into the cortical plate. In the intermediate zone, these migrating precursors move tangentially and initiate the extension of their axons by transiently adopting a characteristic multipolar morphology. We observe that expression of the forkhead transcription factor FoxG1 is dynamically regulated during this transitional period. By utilizing conditional genetic strategies, we show that the downregulation of FoxG1 at the beginning of the multipolar cell phase induces Unc5D expression, the timing of which ultimately determines the laminar identity of pyramidal neurons. In addition, we demonstrate that the re-expression of FoxG1 is required for cells to transit out of the multipolar cell phase and to enter into the cortical plate. Thus, the dynamic expression of FoxG1 during migration within the intermediate zone is essential for the proper assembly of the cerebral cortex.
PMCID:3653132
PMID: 22726835
ISSN: 0896-6273
CID: 172994

Development of sensitivity to global form and motion in macaque monkeys (Macaca nemestrina)

Kiorpes, Lynne; Price, Tracy; Hall-Haro, Cynthia; Movshon, J Anthony
To explore the relative development of the dorsal and ventral extrastriate processing streams, we studied the development of sensitivity to form and motion in macaque monkeys (Macaca nemestrina). We used Glass patterns and random dot kinematograms (RDK) to assay ventral and dorsal stream function, respectively. We tested 24 animals, longitudinally or cross-sectionally, between the ages of 5 weeks and 3 years. Each animal was tested with Glass patterns and RDK stimuli with each of two pattern types--circular and linear--at each age using a two alternative forced-choice task. We measured coherence threshold for discrimination of the global form or motion pattern from an incoherent control stimulus. Sensitivity to global motion appeared earlier than to global form and was higher at all ages, but performance approached adult levels at similar ages. Infants were most sensitive to large spatial scale (Deltax) and fast speeds; sensitivity to fine scale and slow speeds developed more slowly independently of pattern type. Within the motion domain, pattern type had little effect on overall performance. However, within the form domain, sensitivity for linear Glass patterns was substantially poorer than that for concentric patterns. Our data show comparatively early onset for global motion integration ability, perhaps reflecting early development of the dorsal stream. However, both pathways mature over long time courses reaching adult levels between 2 and 3 years after birth.
PMCID:3374036
PMID: 22580018
ISSN: 0042-6989
CID: 357522

Contrasting pathology of the stress granule proteins TIA-1 and G3BP in tauopathies

Vanderweyde, Tara; Yu, Haung; Varnum, Megan; Liu-Yesucevitz, Liqun; Citro, Allison; Ikezu, Tsuneya; Duff, Karen; Wolozin, Benjamin
Stress induces aggregation of RNA-binding proteins to form inclusions, termed stress granules (SGs). Recent evidence suggests that SG proteins also colocalize with neuropathological structures, but whether this occurs in Alzheimer's disease is unknown. We examined the relationship between SG proteins and neuropathology in brain tissue from P301L Tau transgenic mice, as well as in cases of Alzheimer's disease and FTDP-17. The pattern of SG pathology differs dramatically based on the RNA-binding protein examined. SGs positive for T-cell intracellular antigen-1 (TIA-1) or tristetraprolin (TTP) initially do not colocalize with tau pathology, but then merge with tau inclusions as disease severity increases. In contrast, G3BP (ras GAP-binding protein) identifies a novel type of molecular pathology that shows increasing accumulation in neurons with increasing disease severity, but often is not associated with classic markers of tau pathology. TIA-1 and TTP both bind phospho-tau, and TIA-1 overexpression induces formation of inclusions containing phospho-tau. These data suggest that SG formation might stimulate tau pathophysiology. Thus, study of RNA-binding proteins and SG biology highlights novel pathways interacting with the pathophysiology of AD, providing potentially new avenues for identifying diseased neurons and potentially novel mechanisms regulating tau biology.
PMCID:3402380
PMID: 22699908
ISSN: 1529-2401
CID: 2077122