Searched for: school:SOM
Department/Unit:Cell Biology
The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule
Cross, Benedict C S; Bond, Peter J; Sadowski, Pawel G; Jha, Babal Kant; Zak, Jaroslav; Goodman, Jonathan M; Silverman, Robert H; Neubert, Thomas A; Baxendale, Ian R; Ron, David; Harding, Heather P
IRE1 couples endoplasmic reticulum unfolded protein load to RNA cleavage events that culminate in the sequence-specific splicing of the Xbp1 mRNA and in the regulated degradation of diverse membrane-bound mRNAs. We report on the identification of a small molecule inhibitor that attains its selectivity by forming an unusually stable Schiff base with lysine 907 in the IRE1 endonuclease domain, explained by solvent inaccessibility of the imine bond in the enzyme-inhibitor complex. The inhibitor (abbreviated 4mu8C) blocks substrate access to the active site of IRE1 and selectively inactivates both Xbp1 splicing and IRE1-mediated mRNA degradation. Surprisingly, inhibition of IRE1 endonuclease activity does not sensitize cells to the consequences of acute endoplasmic reticulum stress, but rather interferes with the expansion of secretory capacity. Thus, the chemical reactivity and sterics of a unique residue in the endonuclease active site of IRE1 can be exploited by selective inhibitors to interfere with protein secretion in pathological settings.
PMCID:3326519
PMID: 22315414
ISSN: 0027-8424
CID: 165427
Transcription goes digital
Lionnet, Timothee; Singer, Robert H
Transcription is a complex process that integrates the state of the cell and its environment to generate adequate responses for cell fitness and survival. Recent microscopy experiments have been able to monitor transcription from single genes in individual cells. These observations have revealed two striking features: transcriptional activity can vary markedly from one cell to another, and is subject to large changes over time, sometimes within minutes. How the chromatin structure, transcription machinery assembly and signalling networks generate such patterns is still unclear. In this review, we present the techniques used to investigate transcription from single genes, introduce quantitative modelling tools, and discuss transcription mechanisms and their implications for gene expression regulation.
PMCID:3321162
PMID: 22410830
ISSN: 1469-3178
CID: 2385252
A primary neuron culture system for the study of herpes simplex virus latency and reactivation
Kobayashi, Mariko; Kim, Ju-Youn; Camarena, Vladimir; Roehm, Pamela C; Chao, Moses V; Wilson, Angus C; Mohr, Ian
Herpes simplex virus type-1 (HSV-1) establishes a life-long latent infection in peripheral neurons. This latent reservoir is the source of recurrent reactivation events that ensure transmission and contribute to clinical disease. Current antivirals do not impact the latent reservoir and there are no vaccines. While the molecular details of lytic replication are well-characterized, mechanisms controlling latency in neurons remain elusive. Our present understanding of latency is derived from in vivo studies using small animal models, which have been indispensable for defining viral gene requirements and the role of immune responses. However, it is impossible to distinguish specific effects on the virus-neuron relationship from more general consequences of infection mediated by immune or non-neuronal support cells in live animals. In addition, animal experimentation is costly, time-consuming, and limited in terms of available options for manipulating host processes. To overcome these limitations, a neuron-only system is desperately needed that reproduces the in vivo characteristics of latency and reactivation but offers the benefits of tissue culture in terms of homogeneity and accessibility. Here we present an in vitro model utilizing cultured primary sympathetic neurons from rat superior cervical ganglia (SCG) (Figure 1) to study HSV-1 latency and reactivation that fits most if not all of the desired criteria. After eliminating non-neuronal cells, near-homogeneous TrkA(+) neuron cultures are infected with HSV-1 in the presence of acyclovir (ACV) to suppress lytic replication. Following ACV removal, non-productive HSV-1 infections that faithfully exhibit accepted hallmarks of latency are efficiently established. Notably, lytic mRNAs, proteins, and infectious virus become undetectable, even in the absence of selection, but latency-associated transcript (LAT) expression persists in neuronal nuclei. Viral genomes are maintained at an average copy number of 25 per neuron and can be induced to productively replicate by interfering with PI3-Kinase / Akt signaling or the simple withdrawal of nerve growth factor(1). A recombinant HSV-1 encoding EGFP fused to the viral lytic protein Us11 provides a functional, real-time marker for replication resulting from reactivation that is readily quantified. In addition to chemical treatments, genetic methodologies such as RNA-interference or gene delivery via lentiviral vectors can be successfully applied to the system permitting mechanistic studies that are very difficult, if not impossible, in animals. In summary, the SCG-based HSV-1 latency / reactivation system provides a powerful, necessary tool to unravel the molecular mechanisms controlling HSV1 latency and reactivation in neurons, a long standing puzzle in virology whose solution may offer fresh insights into developing new therapies that target the latent herpesvirus reservoir.
PMCID:3466666
PMID: 22491318
ISSN: 1940-087x
CID: 164363
Tafazzin knockdown in mice leads to a developmental cardiomyopathy with early diastolic dysfunction preceding myocardial noncompaction
Phoon, Colin K L; Acehan, Devrim; Schlame, Michael; Stokes, David L; Edelman-Novemsky, Irit; Yu, Dawen; Xu, Yang; Viswanathan, Nitya; Ren, Mindong
BACKGROUND: Barth syndrome is a rare, multisystem disorder caused by mutations in tafazzin that lead to cardiolipin deficiency and mitochondrial abnormalities. Patients most commonly develop an early-onset cardiomyopathy in infancy or fetal life. METHODS AND RESULTS: Knockdown of tafazzin (TAZKD) in a mouse model was induced from the start of gestation via a doxycycline-inducible shRNA transgenic approach. All liveborn TAZKD mice died within the neonatal period, and in vivo echocardiography revealed prenatal loss of TAZKD embryos at E12.5-14.5. TAZKD E13.5 embryos and newborn mice demonstrated significant tafazzin knockdown, and mass spectrometry analysis of hearts revealed abnormal cardiolipin profiles typical of Barth syndrome. Electron microscopy of TAZKD hearts demonstrated ultrastructural abnormalities in mitochondria at both E13.5 and newborn stages. Newborn TAZKD mice exhibited a significant reduction in total mitochondrial area, smaller size of individual mitochondria, reduced cristae density, and disruption of the normal parallel orientation between mitochondria and sarcomeres. Echocardiography of E13.5 and newborn TAZKD mice showed good systolic function, but early diastolic dysfunction was evident from an abnormal flow pattern in the dorsal aorta. Strikingly, histology of E13.5 and newborn TAZKD hearts showed myocardial thinning, hypertrabeculation and noncompaction, and defective ventricular septation. Altered cellular proliferation occurring within a narrow developmental window accompanied the myocardial hypertrabeculation-noncompaction. CONCLUSIONS: In this murine model, tafazzin deficiency leads to a unique developmental cardiomyopathy characterized by ventricular myocardial hypertrabeculation-noncompaction and early lethality. A central role of cardiolipin and mitochondrial functioning is strongly implicated in cardiomyocyte differentiation and myocardial patterning required for heart development. (J Am Heart Assoc. 2012;1:jah3-e000455 doi: 10.1161/JAHA.111.000455.).
PMCID:3487377
PMID: 23130124
ISSN: 2047-9980
CID: 180952
Regulation of cranial morphogenesis and cell fate at the neural crest-mesoderm boundary by engrailed 1
Deckelbaum, Ron A; Holmes, Greg; Zhao, Zhicheng; Tong, Chunxiang; Basilico, Claudio; Loomis, Cynthia A
The characterization of mesenchymal progenitors is central to understanding development, postnatal pathology and evolutionary adaptability. The precise identity of the mesenchymal precursors that generate the coronal suture, an important structural boundary in mammalian skull development, remains unclear. We show in mouse that coronal suture progenitors originate from hedgehog-responsive cephalic paraxial mesoderm (Mes) cells, which migrate rapidly to a supraorbital domain and establish a unidirectional lineage boundary with neural crest (NeuC) mesenchyme. Lineage tracing reveals clonal and stereotypical expansion of supraorbital mesenchymal cells to form the coronal suture between E11.0 and E13.5. We identify engrailed 1 (En1) as a necessary regulator of cell movement and NeuC/Mes lineage boundary positioning during coronal suture formation. In addition, we provide genetic evidence that En1 functions upstream of fibroblast growth factor receptor 2 (Fgfr2) in regulating early calvarial osteogenic differentiation, and postulate that it plays an additional role in precluding premature osteogenic conversion of the sutural mesenchyme.
PMCID:3294437
PMID: 22395741
ISSN: 0950-1991
CID: 159856
BDNF Val66Met Impairs Fluoxetine-Induced Enhancement of Adult Hippocampus Plasticity
Bath, Kevin G; Jing, Deqiang Q; Dincheva, Iva; Neeb, Christine C; Pattwell, Siobhan S; Chao, Moses V; Lee, Francis S; Ninan, Ipe
Recently, a single-nucleotide polymorphism (SNP) in the brain-derived neurotrophic factor (BDNF) gene (BDNF Val66Met) has been linked to the development of multiple forms of neuropsychiatric illness. This SNP, when genetically introduced into mice, recapitulates core phenotypes identified in human BDNF Val66Met carriers. In mice, this SNP also leads to elevated expression of anxiety-like behaviors that are not rescued with the prototypic selective serotonin reuptake inhibitor (SSRI), fluoxetine. A prominent hypothesis is that SSRI-induced augmentation of BDNF protein expression and the beneficial trophic effects of BDNF on neural plasticity are critical components for drug response. Thus, these mice represent a potential model to study the biological mechanism underlying treatment-resistant forms of affective disorders. To test whether the BDNF Val66Met SNP alters SSRI-induced changes in neural plasticity, we used wild-type (BDNF(Val/Val)) mice, and mice homozygous for the BDNF Val66Met SNP (BDNF(Met/Met)). We assessed hippocampal BDNF protein levels, survival rates of adult born cells, and synaptic plasticity (long-term potentiation, LTP) in the dentate gyrus either with or without chronic (28-day) fluoxetine treatment. BDNF(Met/Met) mice had decreased basal BDNF protein levels in the hippocampus that did not significantly increase following fluoxetine treatment. BDNF(Met/Met) mice had impaired survival of newly born cells and LTP in the dentate gyrus; the LTP effects remained blunted following fluoxetine treatment. The observed effects of the BDNF Val66Met SNP on hippocampal BDNF expression and synaptic plasticity provide a possible mechanistic basis by which this common BDNF SNP may impair efficacy of SSRI drug treatment.
PMCID:3306891
PMID: 22218094
ISSN: 0893-133x
CID: 162952
MAL facilitates the incorporation of exocytic uroplakin-delivering vesicles into the apical membrane of urothelial umbrella cells
Zhou, G; Liang, FX; Romih, R; Wang, Z; Liao, Y; Ghiso, J; Luque-Garcia, JL; Neubert, TA; Kreibich, G; Alonso, MA; Schaeren-Wiemers, N; Sun, TT
The apical surface of mammalian bladder urothelium is covered by large (500-1000 nm) two-dimensional (2D) crystals of hexagonally packed 16-nm uroplakin particles (urothelial plaques), which play a role in permeability barrier function and uropathogenic bacterial binding. How the uroplakin proteins are delivered to the luminal surface is unknown. We show here that myelin-and-lymphocyte protein (MAL), a 17-kDa tetraspan protein suggested to be important for the apical sorting of membrane proteins, is coexpressed with uroplakins in differentiated urothelial cell layers. MAL depletion in Madin-Darby canine kidney cells did not affect, however, the apical sorting of uroplakins, but it decreased the rate by which uroplakins were inserted into the apical surface. Moreover, MAL knockout in vivo led to the accumulation of fusiform vesicles in mouse urothelial superficial umbrella cells, whereas MAL transgenic overexpression in vivo led to enhanced exocytosis and compensatory endocytosis, resulting in the accumulation of the uroplakin-degrading multivesicular bodies. Finally, although MAL and uroplakins cofloat in detergent-resistant raft fractions, they are associated with distinct plaque and hinge membrane subdomains, respectively. These data suggest a model in which 1) MAL does not play a role in the apical sorting of uroplakins; 2) the propensity of uroplakins to polymerize forming 16-nm particles and later large 2D crystals that behave as detergent-resistant (giant) rafts may drive their apical targeting; 3) the exclusion of MAL from the expanding 2D crystals of uroplakins explains the selective association of MAL with the hinge areas in the uroplakin-delivering fusiform vesicles, as well as at the apical surface; and 4) the hinge-associated MAL may play a role in facilitating the incorporation of the exocytic uroplakin vesicles into the corresponding hinge areas of the urothelial apical surface.
PMCID:3315800
PMID: 22323295
ISSN: 1059-1524
CID: 165440
Reduced heterogeneous expression of Cx43 results in decreased Nav1.5 expression and reduced sodium current that accounts for arrhythmia vulnerability in conditional Cx43 knockout mice
Jansen JA; Noorman M; Musa H; Stein M; de Jong S; van der Nagel R; Hund TJ; Mohler PJ; Vos MA; van Veen TA; de Bakker JM; Delmar M; van Rijen HV
BACKGROUND: Reduced expression of connexin 43 (Cx43) and sodium channel (Nav1.5) and increased expression of collagen (fibrosis) are important determinants of impulse conduction in the heart. OBJECTIVE: To study the importance and interaction of these factors at very low Cx43 expression, inducible Cx43 knockout mice with and without inducible ventricular tachycardia (VT) were compared through electrophysiology and immunohistochemistry. METHODS: Cx43(CreER(T)/fl) mice were induced with tamoxifen and killed after 2 weeks. Epicardial activation mapping was performed on Langendorff-perfused hearts, and arrhythmia vulnerability was tested. Mice were divided into arrhythmogenic (VT+; n = 13) and nonarrhythmogenic (VT-; n = 10) animals, and heart tissue was analyzed for Cx43, Nav1.5, and fibrosis. RESULTS: VT+ mice had decreased Cx43 expression with increased global, but not local, heterogeneity of Cx43 than did VT- mice. Nav1.5-immunoreactive protein expression was lower in VT+ than in VT- mice, specifically at sites devoid of Cx43. Levels of fibrosis were similar between VT- and VT+ mice. QRS duration was increased and epicardial activation was more dispersed in VT+ mice than in VT- mice. The effective refractory period was similar between the 2 groups. Premature stimulation resulted in a more severe conduction slowing in VT+ than in VT- hearts in the right ventricle. Separate patch-clamp experiments in isolated rat ventricular myocytes confirmed that the loss of Cx43 expression correlated with the decreased sodium current amplitude. CONCLUSIONS: Global heterogeneity in Cx43 expression and concomitant heterogeneous downregulation of sodium-channel protein expression and sodium current leads to slowed and dispersed conduction, which sensitizes the heart for ventricular arrhythmias
PMCID:3336370
PMID: 22100711
ISSN: 1556-3871
CID: 149999
Broadly neutralizing antibodies against influenza virus and prospects for universal therapies
Ekiert, Damian C; Wilson, Ian A
Vaccines are the gold standard for the control and prevention of infectious diseases, but a number of important human diseases remain challenging targets for vaccine development. An influenza vaccine that confers broad spectrum, long-term protection remains elusive. Several broadly neutralizing antibodies have been identified that protect against multiple subtypes of influenza A viruses, and crystal structures of several neutralizing antibodies in complex with the major influenza surface antigen, hemagglutinin, have revealed at least 3 highly conserved epitopes. Our understanding of the molecular details of these antibody-antigen interactions has suggested new strategies for the rational design of improved influenza vaccines, and has inspired the development of new antivirals for the treatment of influenza infections.
PMCID:3368890
PMID: 22482710
ISSN: 1879-6265
CID: 2291412
MicroRNAs regulating lipid metabolism in atherogenesis
Rayner, K J; Fernandez-Hernando, C; Moore, K J
MicroRNAs have emerged as important post-transcriptional regulators of lipid metabolism, and represent a new class of targets for therapeutic intervention. Recently, microRNA-33a and b (miR-33a/b) were discovered as key regulators of metabolic programs including cholesterol and fatty acid homeostasis. These intronic microRNAs are embedded in the sterol response element binding protein genes, SREBF2 and SREBF1, which code for transcription factors that coordinate cholesterol and fatty acid synthesis. By repressing a variety of genes involved in cholesterol export and fatty acid oxidation, including ABCA1, CROT, CPT1, HADHB and PRKAA1, miR-33a/b act in concert with their host genes to boost cellular sterol levels. Recent work in animal models has shown that inhibition of these small non-coding RNAs has potent effects on lipoprotein metabolism, including increasing plasma high-density lipoprotein (HDL) and reducing very low density lipoprotein (VLDL) triglycerides. Furthermore, other microRNAs are being discovered that also target the ABCA1 pathway, including miR-758, suggesting that miRNAs may work cooperatively to regulate this pathway. These exciting findings support the development of microRNA antagonists as potential therapeutics for the treatment of dyslipidaemia, atherosclerosis and related metabolic diseases.
PMCID:3618663
PMID: 22274626
ISSN: 0340-6245
CID: 166813