Searched for: school:SOM
Department/Unit:Cell Biology
Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells
Stadtfeld, Matthias; Apostolou, Effie; Ferrari, Francesco; Choi, Jiho; Walsh, Ryan M; Chen, Taiping; Ooi, Steen S K; Kim, Sang Yong; Bestor, Timothy H; Shioda, Toshi; Park, Peter J; Hochedlinger, Konrad
The generation of induced pluripotent stem cells (iPSCs) often results in aberrant epigenetic silencing of the imprinted Dlk1-Dio3 gene cluster, compromising the ability to generate entirely iPSC-derived adult mice ('all-iPSC mice'). Here, we show that reprogramming in the presence of ascorbic acid attenuates hypermethylation of Dlk1-Dio3 by enabling a chromatin configuration that interferes with binding of the de novo DNA methyltransferase Dnmt3a. This approach allowed us to generate all-iPSC mice from mature B cells, which have until now failed to support the development of exclusively iPSC-derived postnatal animals. Our data show that transcription factor-mediated reprogramming can endow a defined, terminally differentiated cell type with a developmental potential equivalent to that of embryonic stem cells. More generally, these findings indicate that culture conditions during cellular reprogramming can strongly influence the epigenetic and biological properties of the resultant iPSCs.
PMCID:3538378
PMID: 22387999
ISSN: 1061-4036
CID: 232792
Peptidomic analysis of HEK293T cells: effect of the proteasome inhibitor epoxomicin on intracellular peptides
Fricker, Lloyd D; Gelman, Julia S; Castro, Leandro M; Gozzo, Fabio C; Ferro, Emer S
Peptides derived from cytosolic, mitochondrial, and nuclear proteins have been detected in extracts of animal tissues and cell lines. To test whether the proteasome is involved in their formation, HEK293T cells were treated with epoxomicin (0.2 or 2 μM) for 1 h and quantitative peptidomics analysis was performed. Altogether, 147 unique peptides were identified by mass spectrometry sequence analysis. Epoxomicin treatment decreased the levels of the majority of intracellular peptides, consistent with inhibition of the proteasome beta-2 and beta-5 subunits. Treatment with the higher concentration of epoxomicin elevated the levels of some peptides. Most of the elevated peptides resulted from cleavages at acidic residues, suggesting that epoxomicin increased the processing of proteins through the beta-1 subunit. Interestingly, some of the peptides that were elevated by the epoxomicin treatment had hydrophobic residues in P1 cleavage sites. Taken together, these findings suggest that, while the proteasome is the major source of intracellular peptides, other peptide-generating mechanisms exist. Because intracellular peptides are likely to perform intracellular functions, studies using proteasome inhibitors need to be interpreted with caution, as it is possible that the effects of these inhibitors are due to a change in the peptide levels rather than inhibition of protein degradation.
PMCID:3315381
PMID: 22304392
ISSN: 1535-3907
CID: 4502412
EZH2 couples pancreatic regeneration to neoplastic progression
Mallen-St Clair, Jon; Soydaner-Azeloglu, Rengin; Lee, Kyoung Eun; Taylor, Laura; Livanos, Alexandra; Pylayeva-Gupta, Yuliya; Miller, George; Margueron, Raphael; Reinberg, Danny; Bar-Sagi, Dafna
Although the polycomb group protein Enhancer of Zeste Homolog 2 (EZH2) is well recognized for its role as a key regulator of cell differentiation, its involvement in tissue regeneration is largely unknown. Here we show that EZH2 is up-regulated following cerulein-induced pancreatic injury and is required for tissue repair by promoting the regenerative proliferation of progenitor cells. Loss of EZH2 results in impaired pancreatic regeneration and accelerates KRas(G12D)-driven neoplasia. Our findings implicate EZH2 in constraining neoplastic progression through homeostatic mechanisms that control pancreatic regeneration and provide insights into the documented link between chronic pancreatic injury and an increased risk for pancreatic cancer.
PMCID:3305982
PMID: 22391448
ISSN: 0890-9369
CID: 159852
Mir-33 regulates cell proliferation and cell cycle progression
Cirera-Salinas, D; Pauta, M; Allen, RM; Salerno, AG; Ramirez, CM; Chamorro-Jorganes, A; Wanschel, AC; Lasuncion, MA; Morales-Ruiz, M; Suarez, Y; Baldan, A; Esplugues, E; Fernandez-Hernando, C
Cholesterol metabolism is tightly regulated at the cellular level and is essential for cellular growth. MicroRNAs (miRNAs), a class of noncoding RNAs, have emerged as critical regulators of gene expression, acting predominantly at the posttranscriptional level. Recent work from our group and others has shown that hsa-miR-33a and hsa-miR-33b, miRNAs located within intronic sequences of the Srebp genes, regulate cholesterol and fatty acid metabolism in concert with their host genes. Here, we show that hsa-miR-33 family members modulate the expression of genes involved in cell cycle regulation and cell proliferation. MiR-33 inhibits the expression of the cyclin-dependent kinase 6 (CDK6) and cyclin D1 (CCND1), thereby reducing cell proliferation and cell cycle progression. Overexpression of miR-33 induces a significant G1 cell cycle arrest in Huh7 and A549 cell lines. Most importantly, inhibition of miR-33 expression using 2'fluoro/methoxyethylmodified (2'F/MOE-modified) phosphorothioate backbone antisense oligonucleotides improves liver regeneration after partial hepatectomy (PH) in mice, suggesting an important role for miR-33 in regulating hepatocyte proliferation during liver regeneration. Altogether, these results suggest that Srebp/miR-33 locus may cooperate to regulate cell proliferation and cell cycle progression and may also be relevant to human liver regeneration.
PMCID:3323796
PMID: 22333591
ISSN: 1551-4005
CID: 163698
Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis
Pauli, Andrea; Valen, Eivind; Lin, Michael F; Garber, Manuel; Vastenhouw, Nadine L; Levin, Joshua Z; Fan, Lin; Sandelin, Albin; Rinn, John L; Regev, Aviv; Schier, Alexander F
Long noncoding RNAs (lncRNAs) comprise a diverse class of transcripts that structurally resemble mRNAs but do not encode proteins. Recent genome-wide studies in humans and the mouse have annotated lncRNAs expressed in cell lines and adult tissues, but a systematic analysis of lncRNAs expressed during vertebrate embryogenesis has been elusive. To identify lncRNAs with potential functions in vertebrate embryogenesis, we performed a time-series of RNA-seq experiments at eight stages during early zebrafish development. We reconstructed 56,535 high-confidence transcripts in 28,912 loci, recovering the vast majority of expressed RefSeq transcripts while identifying thousands of novel isoforms and expressed loci. We defined a stringent set of 1133 noncoding multi-exonic transcripts expressed during embryogenesis. These include long intergenic ncRNAs (lincRNAs), intronic overlapping lncRNAs, exonic antisense overlapping lncRNAs, and precursors for small RNAs (sRNAs). Zebrafish lncRNAs share many of the characteristics of their mammalian counterparts: relatively short length, low exon number, low expression, and conservation levels comparable to that of introns. Subsets of lncRNAs carry chromatin signatures characteristic of genes with developmental functions. The temporal expression profile of lncRNAs revealed two novel properties: lncRNAs are expressed in narrower time windows than are protein-coding genes and are specifically enriched in early-stage embryos. In addition, several lncRNAs show tissue-specific expression and distinct subcellular localization patterns. Integrative computational analyses associated individual lncRNAs with specific pathways and functions, ranging from cell cycle regulation to morphogenesis. Our study provides the first systematic identification of lncRNAs in a vertebrate embryo and forms the foundation for future genetic, genomic, and evolutionary studies.
PMCID:3290793
PMID: 22110045
ISSN: 1088-9051
CID: 876852
S6K links cell fate, cell cycle and nutrient response in C. elegans germline stem/progenitor cells
Korta, Dorota Z; Tuck, Simon; Hubbard, E Jane Albert
Coupling of stem/progenitor cell proliferation and differentiation to organismal physiological demands ensures the proper growth and homeostasis of tissues. However, in vivo mechanisms underlying this control are poorly characterized. We investigated the role of ribosomal protein S6 kinase (S6K) at the intersection of nutrition and the establishment of a stem/progenitor cell population using the C. elegans germ line as a model. We find that rsks-1 (which encodes the worm homolog of mammalian p70S6K) is required germline-autonomously for proper establishment of the germline progenitor pool. In the germ line, rsks-1 promotes cell cycle progression and inhibits larval progenitor differentiation, promotes growth of adult tumors and requires a conserved TOR phosphorylation site. Loss of rsks-1 and ife-1 (eIF4E) together reduces the germline progenitor pool more severely than either single mutant and similarly to reducing the activity of let-363 (TOR) or daf-15 (RAPTOR). Moreover, rsks-1 acts in parallel with the glp-1 (Notch) and daf-2 (insulin-IGF receptor) pathways, and does not share the same genetic dependencies with its role in lifespan control. We show that overall dietary restriction and amino acid deprivation cause germline defects similar to a subset of rsks-1 mutant phenotypes. Consistent with a link between diet and germline proliferation via rsks-1, loss of rsks-1 renders the germ line largely insensitive to the effects of dietary restriction. Our studies establish the C. elegans germ line as an in vivo model to understand TOR-S6K signaling in proliferation and differentiation and suggest that this pathway is a key nutrient-responsive regulator of germline progenitors.
PMCID:3274352
PMID: 22278922
ISSN: 0950-1991
CID: 157757
Molecular mechanisms of cryptococcal meningitis
Liu, Tong-Bao; Perlin, David S; Xue, Chaoyang
Fungal meningitis is a serious disease caused by a fungal infection of the central nervous system (CNS) mostly in individuals with immune system deficiencies. Fungal meningitis is often fatal without proper treatment, and the mortality rate remains unacceptably high even with antifungal drug interventions. Currently, cryptococcal meningitis is the most common fungal meningitis in HIV-1/AIDS, and its disease mechanism has been extensively studied. The key steps for fungi to infect brain and cause meningitis after establishment of local infection are the dissemination of fungal cells to the bloodstream and invasion through the blood brain barrier to reach the CNS. In this review, we use cryptococcal CNS infection as an example to describe the current molecular understanding of fungal meningitis, including the establishment of the infection, dissemination, and brain invasion. Host and microbial factors that contribute to these infection steps are also discussed.
PMCID:3396696
PMID: 22460646
ISSN: 2150-5594
CID: 309692
Janus kinase 3: the controller and the controlled
Wu, Wei; Sun, Xiao-Hong
Janus kinase (JAK)-signal transducer and activators of transcription (STAT) signaling pathways play crucial roles in lymphopoiesis. In particular, JAK3 has unique functions in the lymphoid system such that JAK3 ablation results in phenotypes resembling severe combined immunodeficiency syndrome. This review focuses on the biochemistry, immunological functions, and clinical significance of JAK3. Compared with other members of the JAK family, the biochemical properties of JAK3 are relatively less well characterized and thus largely inferred from studies of JAK2. Furthermore, new findings concerning the cross-talks between Notch and JAK signaling pathways through ubiquitin-mediated protein degradation are discussed in more detail.
PMCID:3284110
PMID: 22130498
ISSN: 1672-9145
CID: 830242
Regulation of cholesterol homeostasis
Goedeke, Leigh; Fernandez-Hernando, Carlos
Cholesterol homeostasis is among the most intensely regulated processes in biology. Since its isolation from gallstones at the time of the French Revolution, cholesterol has been extensively studied. Insufficient or excessive cellular cholesterol results in pathological processes including atherosclerosis and metabolic syndrome. Mammalian cells obtain cholesterol from the circulation in the form of plasma lipoproteins or intracellularly, through the synthesis of cholesterol from acetyl coenzyme A (acetyl-CoA). This process is tightly regulated at multiple levels. In this review, we provide an overview of the multiple mechanisms by which cellular cholesterol metabolism is regulated. We also discuss the recent advances in the post-transcriptional regulation of cholesterol homeostasis, including the role of small non-coding RNAs (microRNAs). These novel findings may open new avenues for the treatment of dyslipidemias and cardiovascular diseases.
PMID: 22009455
ISSN: 1420-682x
CID: 158263
New insights into microRNA-29 regulation: a new key player in cardiovascular disease [Comment]
Suarez, Yajaira; Fernandez-Hernando, Carlos
PMID: 22285722
ISSN: 0022-2828
CID: 164275