Searched for: school:SOM
Department/Unit:Neuroscience Institute
"Epac2-dependent mobilization of intracellular Ca2+ by glucagonlike peptide-1 receptor agonist exendin-4 is disrupted in beta -cells of phospholipase C-epsilon knockout mice": Corrigenda
Dzhura, Igor; Chepurny, Oleg G; Kelley, Grant G; Leech, Colin A; Roe, Michael W; Dzhura, Elvira; Afshari, Parisa; Malik, Sundeep; Rindler, Michael J; Xu, Xin; Lu, Youming; Smrcka, Alan V; Holz, George G
Reports an error in "Epac2-dependent mobilization of intracellular Ca2+ by glucagon-like peptide-1 receptor agonist exendin-4 is disrupted in beta -cells of phospholipase C-epsilon knockout mice" by Igor Dzhura, Oleg G. Chepurny, Grant G. Kelley, Colin A. Leech, Michael W. Roe, Elvira Dzhura, Parisa Afshari, Sundeep Malik, Michael J. Rindler, Xin Xu, Youming Lu, Alan V. Smrcka and George G. Holz (The Journal of Physiology, 2010[Dec][15], Vol 588[24], 4871-4889). In the original article, there was an error in the Methods section entitled 'Generation of Epac2 knockout mice' on page 4873. The first sentence of that section should read 'Epac2 KO mice with global disruption of RAPGEF4 gene expression (NCBI GeneID 56508) were generated by the Texas A&M Institute for Genomic Medicine through customized service for Dr. Lu at Louisiana State University Health Sciences Center'. (The following abstract of the original article appeared in record 2011-11969-007). Calcium can be mobilized in pancreatic beta -cells via a mechanism of Ca2+-induced Ca2+ release (CICR), and cAMP-elevating agents such as exendin-4 facilitate CICR in beta -cells by activating both protein kinase A and Epac2. Here we provide the first report that a novel phosphoinositide-specific phospholipase C-epsilon (PLC-epsilon ) is expressed in the islets of Langerhans, and that the knockout (KO) of PLC-epsilon gene expression in mice disrupts the action of exendin-4 to facilitate CICR in the beta -cells of these mice. Thus, in the present study, in which wild-type (WT) C57BL/6 mouse beta -cells were loaded with the photolabile Ca2+ chelator NP-EGTA, the UV flash photolysis-catalysed uncaging of Ca2+ generated CICR in only 9% of the beta -cells tested, whereas CICR was generated in 82% of the beta -cells pretreated with exendin-4. This action of exendin-4 to facilitate CICR was reproduced by cAMP analogues that activate protein kinase A(6-Bnz-cAMP-AM)orEpac2 (8-pCPT-2'-O-Me-cAMP-AM)selectively. However, in beta -cells of PLC-epsilon KO mice, and also Epac2 KO mice, these test substances exhibited differential efficacies in the CICR assay such that exendin-4 was partly effective, 6-Bnz-cAMP-AM was fully effective, and 8-pCPT-2'-O-Me-cAMP-AM was without significant effect. Importantly, transduction of PLC-epsilon KO beta -cells with recombinant PLC-epsilon rescued the action of 8-pCPT-2'-O-Me-cAMP-AM to facilitate CICR, whereas a K2150E PLC-epsilon with amutated Ras association (RA) domain, or a H1640L PLC-epsilon that is catalytically dead, were both ineffective. Since 8-pCPT-2'-O-Me-cAMP-AM failed to facilitate CICR in WT beta -cells transduced with a GTPase activating protein (RapGAP) that downregulates Rap activity, the available evidence indicates that a signal transduction 'module' comprised of Epac2, Rap and PLC-epsilon exists in beta -cells, and that the activities of Epac2 and PLC-epsilon are key determinants of CICR in this cell type.
PSYCH:2012-07174-020
ISSN: 1469-7793
CID: 164472
Gene expression profiling using the terminal continuation (TC) RNA amplification method for small input samples in neuroscience
Chapter by: Ginsberg, SD; Alldred, MJ; Che, S
in: Expression profiling in neuroscience by Karamanos, Yannis [Eds]
New York : Humana Press, c2012
pp. 21-33
ISBN: 9781617794476
CID: 448622
Transcriptome-to-reactome biosimulation: Basal forebrain cholinergic neuron neurotrophin signaling [Meeting Abstract]
Phelix, C; Rahimi, O; Colom, L; Perry, G; Ginsberg, S
Background: Neurotrophin signaling of cholinergic basal forebrain (CBF) neurons is critical for survival and plasticity. Microaspiration of identified CBF neurons from postmortem human brain revealed a shift in balance of neurotrophin receptors toward cell death pathways during the progression of Alzheimer's disease (AD). Methods: In this study transcriptomic data from mouse basal forebrain cholinergic neurons (BFCNs; NCBI GEO GSE13379) were used to derive parameters for a deterministic kinetic model of the nerve growth factor (NGF) signaling pathway from Reactome, with TrkB receptor mechanisms added. This method is called Transcriptome-To-Reactome (TTR)-. The biosimulation was performed using COPASI software and included 11 compartments 435 species, and 263 reactions; 245 genes were used to determine initial values of species and kinetic values of reactions. The mouse BFCN model was considered baseline and a biosimulation was run with two doses of NGF, 500 m M and 10 mM, delivered as a bolus and for a 10 and 240 second duration, respectively. This approach tested selectively for p75 NTR and TrkA receptor mediated mechanisms. A second biosimulation test used a combination of 25 mM brain derived neurotrophic factor (BDNF) and 10 m M NGF as a continuous exposure for 60 min duration; this approach evaluated stimulation of p75 NTR TrkA, and TrkB. Based on the human microarray results demonstrating downregulation of TrkA (50%) and TrkB (60%), the corresponding parameters in the TTR biosimulation were decreased by the same amount. Results: Baseline results were validated from published literature on neuronal calcium levels mediated via the phospholipase C-g and inositol- 3-phosphate pathway at both bolus doses of NGF alone. With the corresponding parameters decreased in the TTR biosimulation, Figure 1: A) The reaction flux for c-RAF1 phosphorylation of MEK1 was delayed to peak value by 1.5 min from exposure, but the peak value was increased to 5 times the baseline value; B) Moreover, a slight shift t!
EMBASE:70860407
ISSN: 1552-5260
CID: 460992
The Potential of Tissue Engineering and Regeneration for Craniofacial Bone
Yamano, Seiichi; Haku, Ken, Ishioka, Mika; Lin, Terry Y; Hunatani, Shigeru; Dai, Jisen; Moursi, Amir M
ORIGINAL:0009963
ISSN: 2161-1122
CID: 1816092
Molecular characterisation of transport mechanisms at the developing mouse blood-CSF interface: a transcriptome approach
Liddelow, Shane A; Temple, Sally; Mollgard, Kjeld; Gehwolf, Renate; Wagner, Andrea; Bauer, Hannelore; Bauer, Hans-Christian; Phoenix, Timothy N; Dziegielewska, Katarzyna M; Saunders, Norman R
Exchange mechanisms across the blood-cerebrospinal fluid (CSF) barrier in the choroid plexuses within the cerebral ventricles control access of molecules to the central nervous system, especially in early development when the brain is poorly vascularised. However, little is known about their molecular or developmental characteristics. We examined the transcriptome of lateral ventricular choroid plexus in embryonic day 15 (E15) and adult mice. Numerous genes identified in the adult were expressed at similar levels at E15, indicating substantial plexus maturity early in development. Some genes coding for key functions (intercellular/tight junctions, influx/efflux transporters) changed expression during development and their expression patterns are discussed in the context of available physiological/permeability results in the developing brain. Three genes: Secreted protein acidic and rich in cysteine (Sparc), Glycophorin A (Gypa) and C (Gypc), were identified as those whose gene products are candidates to target plasma proteins to choroid plexus cells. These were investigated using quantitative- and single-cell-PCR on plexus epithelial cells that were albumin- or total plasma protein-immunopositive. Results showed a significant degree of concordance between plasma protein/albumin immunoreactivity and expression of the putative transporters. Immunohistochemistry identified SPARC and GYPA in choroid plexus epithelial cells in the embryo with a subcellular distribution that was consistent with transport of albumin from blood to cerebrospinal fluid. In adult plexus this pattern of immunostaining was absent. We propose a model of the cellular mechanism in which SPARC and GYPA, together with identified vesicle-associated membrane proteins (VAMPs) may act as receptors/transporters in developmentally regulated transfer of plasma proteins at the blood-CSF interface.
PMCID:3310074
PMID: 22457777
ISSN: 1932-6203
CID: 2743882
Microarray analysis of hippocampal CA1 pyramidal neurons in a murine model of Down's syndrome (DS) and Alzheimer's disease (AD) [Meeting Abstract]
Alldred, M. J.; Ginsberg, S. D.
BIOSIS:PREV201200722267
ISSN: 1558-3635
CID: 459082
The crystal structure of the Dess-Martin periodinane
Schrockeneder, Albert; Stichnoth, Desiree; Mayer, Peter; Trauner, Dirk
We report the elusive X-ray structure of the Dess-Martin periodinane (DMP), a hypervalent iodine reagent popular amongst synthetic chemists. In the solid state, the highly crystalline compound forms an intricate coordination polymer held together by intermolecular halogen and hydrogen bonds.
PMCID:3458777
PMID: 23019487
ISSN: 1860-5397
CID: 2485012
Molecular switches and cages
Trauner, Dirk
PMCID:3388875
PMID: 23015835
ISSN: 1860-5397
CID: 2485022
Trans-synaptic spread of tau pathology in vivo
Liu, Li; Drouet, Valerie; Wu, Jessica W; Witter, Menno P; Small, Scott A; Clelland, Catherine; Duff, Karen
Tauopathy in the brain of patients with Alzheimer's disease starts in the entorhinal cortex (EC) and spreads anatomically in a defined pattern. To test whether pathology initiating in the EC spreads through the brain along synaptically connected circuits, we have generated a transgenic mouse model that differentially expresses pathological human tau in the EC and we have examined the distribution of tau pathology at different timepoints. In relatively young mice (10-11 months old), human tau was present in some cell bodies, but it was mostly observed in axons within the superficial layers of the medial and lateral EC, and at the terminal zones of the perforant pathway. In old mice (>22 months old), intense human tau immunoreactivity was readily detected not only in neurons in the superficial layers of the EC, but also in the subiculum, a substantial number of hippocampal pyramidal neurons especially in CA1, and in dentate gyrus granule cells. Scattered immunoreactive neurons were also seen in the deeper layers of the EC and in perirhinal and secondary somatosensory cortex. Immunoreactivity with the conformation-specific tau antibody MC1 correlated with the accumulation of argyrophilic material seen in old, but not young mice. In old mice, axonal human tau immunoreactivity, especially at the endzones of the perforant pathway, was greatly reduced. Relocalization of tau from axons to somatodendritic compartments and propagation of tauopathy to regions outside of the EC correlated with mature tangle formation in neurons in the EC as revealed by thioflavin-S staining. Our data demonstrate propagation of pathology from the EC and support a trans-synaptic mechanism of spread along anatomically connected networks, between connected and vulnerable neurons. In general, the mouse recapitulates the tauopathy that defines the early stages of AD and provides a model for testing mechanisms and functional outcomes associated with disease progression.
PMCID:3270029
PMID: 22312444
ISSN: 1932-6203
CID: 2077132
Poor cerebral inflammatory response in eIF2B knock-in mice: implications for the aetiology of vanishing white matter disease
Cabilly, Yuval; Barbi, Mali; Geva, Michal; Marom, Liraz; Chetrit, David; Ehrlich, Marcelo; Elroy-Stein, Orna
BACKGROUND: Mutations in any of the five subunits of eukaryotic translation initiation factor 2B (eIF2B) can lead to an inherited chronic-progressive fatal brain disease of unknown aetiology termed leucoencephalopathy with vanishing white matter (VWM). VWM is one of the most prevalent childhood white matter disorders, which markedly deteriorates after inflammation or exposure to other stressors. eIF2B is a major housekeeping complex that governs the rate of global protein synthesis under normal and stress conditions. A previous study demonstrated that Eif2b5(R132H/R132H) mice suffer delayed white matter development and fail to recover from cuprizone-induced demyelination, although eIF2B enzymatic activity in the mutant brain is reduced by merely 20%. PRINCIPAL FINDINGS: Poor astrogliosis was observed in Eif2b5(R132H/R132H) mice brain in response to systemic stress induced by peripheral injections of lipopolysaccharide (LPS). Even with normal rates of protein synthesis under normal conditions, primary astrocytes and microglia isolated from mutant brains fail to adequately synthesise and secrete cytokines in response to LPS treatment despite proper induction of cytokine mRNAs. CONCLUSIONS: The mild reduction in eIF2B activity prevents the appropriate increase in translation rates upon exposure to the inflammatory stressor LPS. The data underscore the importance of fully-functional translation machinery for efficient cerebral inflammatory response upon insults. It highlights the magnitude of proficient translation rates in restoration of brain homeostasis via microglia-astrocyte crosstalk. This study is the first to suggest the involvement of microglia in the pathology of VWM disease. Importantly, it rationalises the deterioration of clinical symptoms upon exposure of VWM patients to physiological stressors and provides possible explanation for their high phenotypic variability.
PMCID:3464276
PMID: 23056417
ISSN: 1932-6203
CID: 1182062