Searched for: school:SOM
Department/Unit:Neuroscience Institute
Large-scale automated histology in the pursuit of connectomes
Kleinfeld, David; Bharioke, Arjun; Blinder, Pablo; Bock, Davi D; Briggman, Kevin L; Chklovskii, Dmitri B; Denk, Winfried; Helmstaedter, Moritz; Kaufhold, John P; Lee, Wei-Chung Allen; Meyer, Hanno S; Micheva, Kristina D; Oberlaender, Marcel; Prohaska, Steffen; Reid, R Clay; Smith, Stephen J; Takemura, Shinya; Tsai, Philbert S; Sakmann, Bert
How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain's computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity.
PMCID:3758571
PMID: 22072665
ISSN: 0270-6474
CID: 1479832
Sensory Network Dysfunction, Behavioral Impairments, and Their Reversibility in an Alzheimer's beta-Amyloidosis Mouse Model
Wesson DW; Borkowski AH; Landreth GE; Nixon RA; Levy E; Wilson DA
The unique vulnerability of the olfactory system to Alzheimer's disease (AD) provides a quintessential translational tool for understanding mechanisms of synaptic dysfunction and pathological progression in the disease. Using the Tg2576 mouse model of beta-amyloidosis, we show that aberrant, hyperactive olfactory network activity begins early in life, before detectable behavioral impairments or comparable hippocampal dysfunction and at a time when amyloid-beta (Abeta) deposition is restricted to the olfactory bulb (OB). Hyperactive odor-evoked activity in the piriform cortex (PCX) and increased OB-PCX functional connectivity emerged at a time coinciding with olfactory behavior impairments. This hyperactive activity persisted until later in life when the network converted to a hyporesponsive state. This conversion was Abeta-dependent, because liver-X receptor agonist treatment to promote Abeta degradation rescued the hyporesponsive state and olfactory behavior. These data lend evidence to a novel working model of olfactory dysfunction in AD and, complimentary to other recent works, suggest that disease-relevant network dysfunction is highly dynamic and region specific, yet with lasting effects on cognition and behavior
PMCID:3417321
PMID: 22049439
ISSN: 1529-2401
CID: 145504
Local and regional network function in behaviorally relevant cortical circuits of adult mice following postnatal alcohol exposure
Wilson, Donald A; Peterson, Jesse; Basavaraj, Balapal S; Saito, Mariko
BACKGROUND: Ethanol consumption during pregnancy can lead to fetal alcohol spectrum disorder (FASD), which consists of the complete spectrum of developmental deficits including neurological dysfunction. FASD is associated with a variety of neurobehavioral disturbances dependent on the age and duration of exposure. Ethanol exposure in neonatal rodents can also induce widespread apoptotic neurodegeneration and long-lasting behavioral abnormalities similar to FASD. The developmental stage of neonatal rodent brains that are at the peak of synaptogenesis is equivalent to the third trimester of human gestation. METHODS: Male and female C57BL/6By mice were injected with ethanol (20%, 2.5 g/kg, 2 s.c. injections) or an equal volume of saline (controls) on postnatal day 7 (P7). Animals were allowed to mature and at 3 months were tested on an olfactory habituation task known to be dependent on piriform cortex function, a hippocampal-dependent object place memory task, and used for electrophysiological testing of spontaneous and odor-evoked local field potential (LFP) activity in the olfactory bulb, piriform cortex, and dorsal hippocampus. RESULTS: P7 ethanol induced widespread cell death within 1 day of exposure, with highest levels in the neocortex, intermediate levels in the dorsal hippocampus, and relatively low levels in the primary olfactory system. No impairment of odor investigation or odor habituation was detected in P7 ethanol-exposed 3-month-old mice compared to saline controls. However, hippocampal-dependent object place memory was significantly impaired in the P7 ethanol-treated adult mice. Odor-evoked LFP activity was enhanced throughout the olfacto-hippocampal pathway, primarily within the theta frequency band, although the hippocampus also showed elevated evoked delta frequency activity. In addition, functional coherence between the piriform cortex and olfactory bulb and between the piriform cortex and dorsal hippocampus was enhanced in the beta frequency range in P7 ethanol-treated adult mice compared to controls. CONCLUSIONS: P7 ethanol induces an immediate wave of regionally selective cell death followed by long-lasting changes in local circuit and regional network function that are accompanied by changes in neurobehavioral performance. The results suggest that both the activity of local neural circuits within a brain region and the flow of information between brain regions can be modified by early alcohol exposure, which may contribute to long-lasting behavioral abnormalities known to rely on those circuits
PMCID:3170685
PMID: 21649667
ISSN: 1530-0277
CID: 146225
MRI evaluation of axonal reorganization after bone marrow stromal cell treatment of traumatic brain injury
Jiang, Quan; Qu, Changsheng; Chopp, Michael; Ding, Guang Liang; Davarani, Siamak P Nejad-; Helpern, Joseph A; Jensen, Jens H; Zhang, Zheng Gang; Li, Lian; Lu, Mei; Kaplan, David; Hu, Jiani; Shen, Yimin; Kou, Zhifeng; Li, Qingjiang; Wang, Shiyang; Mahmood, Asim
We treated traumatic brain injury (TBI) with human bone marrow stromal cells (hMSCs) and evaluated the effect of treatment on white matter reorganization using MRI. We subjected male Wistar rats (n = 17) to controlled cortical impact and either withheld treatment (controls; n = 9) or inserted collagen scaffolds containing hMSCs (n = 8). Six weeks later, the rats were sacrificed and MRI revealed selective migration of grafted neural progenitor cells towards the white matter reorganized boundary of the TBI-induced lesion. Histology confirmed that the white matter had been reorganized, associated with increased fractional anisotropy (FA; p < 0.01) in the recovery regions relative to the injured core region in both treated and control groups. Treatment with hMSCs increased FA in the recovery regions, lowered T(2) in the core region, decreased lesion volume and improved functional recovery relative to untreated controls. Immunoreactive staining showed axonal projections emanating from neurons and extruding from the corpus callosum into the ipsilateral cortex at the boundary of the lesion. Fiber tracking (FT) maps derived from diffusion tensor imaging confirmed the immunohistological data and provided information on axonal rewiring. The apparent kurtosis coefficient (AKC) detected additional axonal remodeling regions with crossing axons, confirmed by immunohistological staining, compared with FA. Our data demonstrate that AKC, FA, FT and T(2) can be used to evaluate treatment-induced white matter recovery, which may facilitate restorative therapy in patients with TBI.
PMCID:3381889
PMID: 21432927
ISSN: 1099-1492
CID: 139920
Multivoxel Proton MR Spectroscopy Used to Distinguish Anterior Cingulate Metabolic Abnormalities in Patients with Schizophrenia
Hardy, Caitlin J; Tal, Assaf; Babb, James S; Perry, Nissa N; Messinger, Julie W; Antonius, Daniel; Malaspina, Dolores; Gonen, Oded
Purpose: To test the hypothesis that anterior cingulate cortex (ACC) subregions in patients with schizophrenia are metabolically different from those in healthy control subjects. Materials and Methods: This institutional review board-approved study was HIPAA compliant, and all participants provided written informed consent. Twenty-two patients with schizophrenia (13 male, nine female; 39.4 years +/- 10.6 [standard deviation]) and 11 age- and sex-matched control subjects (seven male, four female; 35.5 years +/- 10.7) underwent magnetic resonance (MR) imaging and three-dimensional 3-T voxel proton MR spectroscopy to measure absolute rostral and caudal ACC N-acetylaspartate (NAA), creatine (Cr), and choline (Cho) concentrations. Exact Mann-Whitney test was used to compare patient data with control data, paired-sample Wilcoxon signed rank test was used to compare subregions within groups, and receiver operating characteristic curve analysis was used to assess sensitivity and specificity in diagnosis of schizophrenia. Results: There were no significant metabolic differences between patients and control subjects or between ACC subregions in control subjects. In patients, rostral ACC NAA and Cr concentrations were significantly lower than those in caudal ACC (6.2 mM +/- 1.3 vs 7.1 mM +/- 1.3, P < .01; 5.7 mmol/L +/- 1.4 vs 6.3 mmol/L +/- 1.6, P < .01; respectively); however, this did not hold true for Cho concentrations (1.7 mmol/L +/- 0.5 vs 1.8 mmol/L +/- 0.5). For individual differences between caudal and rostral measurements, only NAA in patients was different from that in control subjects (0.9 mmol/L +/- 1.3 vs -0.1 mmol/L +/- 0.5, P < .01), enabling prediction of schizophrenia with 68% sensitivity and 91% specificity, for a difference of more than 0.4. Conclusion: Significant differences between caudal and rostral NAA concentration are found in ACC of patients with schizophrenia but not in ACC of healthy control subjects, indicating that neuronal density or integrity differences between ACC subregions may be characteristic of the disease. (c) RSNA, 2011
PMCID:3198217
PMID: 21900615
ISSN: 1527-1315
CID: 139474
Prospects for designating Alzheimer's disease research a national priority
Khachaturian, Zaven S
This editorial evaluates the prospects of the National Alzheimer's Project Act (NAPA) succeeding to shape public policies that would substantially increase national expenditures for research on Alzheimer's disease. The essay identifies, in the context of 30-year history, some of the difficult challenges the NAPA Advisory Council must address and offers specific recommendations for an action plan by the Secretary, Department of Health and Human Services (DHHS)
PMID: 22055971
ISSN: 1552-5279
CID: 142963
Haloperidol regulates the state of phosphorylation of ribosomal protein S6 via activation of PKA and phosphorylation of DARPP-32
Valjent, Emmanuel; Bertran-Gonzalez, Jesus; Bowling, Heather; Lopez, Sebastien; Santini, Emanuela; Matamales, Miriam; Bonito-Oliva, Alessandra; Herve, Denis; Hoeffer, Charles; Klann, Eric; Girault, Jean-Antoine; Fisone, Gilberto
Administration of typical antipsychotic drugs, such as haloperidol, promotes cAMP-dependent signaling in the medium spiny neurons (MSNs) of the striatum. In this study, we have examined the effect of haloperidol on the state of phosphorylation of the ribosomal protein S6 (rpS6), a component of the small 40S ribosomal subunit. We found that haloperidol increases the phosphorylation of rpS6 at the dual site Ser235/236, which is involved in the regulation of mRNA translation. This effect was exerted in the MSNs of the indirect pathway, which express specifically dopamine D2 receptors (D2Rs) and adenosine A2 receptors (A2ARs). The effect of haloperidol was decreased by blockade of A2ARs or by genetic attenuation of the Galpha(olf) protein, which couples A2ARs to activation of adenylyl cyclase. Moreover, stimulation of cAMP-dependent protein kinase A (PKA) increased Ser235/236 phosphorylation in cultured striatal neurons. The ability of haloperidol to promote rpS6 phosphorylation was abolished in knock-in mice deficient for PKA activation of the protein phosphatase-1 inhibitor, dopamine- and cAMP-regulated phosphoprotein of 32 kDa. In contrast, pharmacological or genetic inactivation of p70 rpS6 kinase 1, or extracellular signal-regulated kinases did not affect haloperidol-induced rpS6 phosphorylation. These results identify PKA as a major rpS6 kinase in neuronal cells and suggest that regulation of protein synthesis through rpS6 may be a potential target of antipsychotic drugs.
PMCID:3194082
PMID: 21814187
ISSN: 0893-133x
CID: 232212
Development of auditory cortical synaptic receptive fields
Froemke RC; Jones BJ
The central nervous system is plastic throughout life, but is most sensitive to the statistics of the sensory environment during critical periods of early postnatal development. In the auditory cortex, various forms of acoustic experience have been found to shape the formation of receptive fields and influence the overall rate of cortical organization. The synaptic mechanisms that control cortical receptive field plasticity are beginning to be described, particularly for frequency tuning in rodent primary auditory cortex. Inhibitory circuitry plays a major role in critical period regulation, and new evidence suggests that the formation of excitatory-inhibitory balance determines the duration of critical period plasticity for auditory cortical frequency tuning. Cortical inhibition is poorly tuned in the infant brain, but becomes co-tuned with excitation in an experience-dependent manner over the first postnatal month. We discuss evidence suggesting that this may be a general feature of the developing cortex, and describe the functional implications of such transient excitatory-inhibitory imbalance
PMCID:3133871
PMID: 21329722
ISSN: 1873-7528
CID: 132205
Oral Antibiotic Treatment of Helicobacter pylori Leads to Persistently Reduced Intestinal Colonization Rates with Oxalobacter formigenes
Kharlamb, Viktoria; Schelker, Jennifer; Francois, Fritz; Jiang, Juquan; Holmes, Ross P; Goldfarb, David S
Abstract Background and Purpose: Oxalobacter formigenes (OF) may play a protective role in preventing calcium oxalate stones. This is the first prospective study to evaluate the effect of antibiotics on OF colonization. Intestinal colonization by OF is associated with reduced urinary oxalate excretion. Exposure to antibiotics may be an important factor determining rates of colonization. Materials and Methods: The effect of antibiotics on OF colonization was compared in two groups: A group receiving antibiotics for gastric infection with Helicobacter pylori (HP) and a group without HP whose members were not receiving antibiotics. OF colonization in stool was detected by oxalate degradation at baseline and after 1 and 6 months. Results: The prevalence at baseline of intestinal colonization with OF was 43.1% among all patients screened. Among the 12 patients who were positive for OF who did not receive antibiotics, 11 (92%) had OF on stool tests at 1 month and 6 months. Of the 19 participants who were positive for OF and who received antibiotics for HP, only 7 (36.8%) continued to be colonized by OF on follow-up stool testing at 1 and 6 months (P=0.003 by Fisher exact test). Amoxicillin and clarithromycin caused 62.5% of subjects to become negative for OF at 1 month; 56.2% remained negative for OF at 6 months. Conclusions: Antibiotics for HP infection effectively reduced colonization with OF, an effect present at 1 and 6 months after treatment. The lasting elimination of OF could be associated with hyperoxaluria and be a factor in recurrent kidney stone disease
PMCID:3210432
PMID: 22017284
ISSN: 1557-900x
CID: 141076
Pattern separation in the dentate gyrus: A role for the CA3 backprojection
Myers CE; Scharfman HE
Many theories of hippocampal function assume that area CA3 of hippocampus is capable of performing rapid pattern storage, as well as pattern completion when a partial version of a familiar pattern is presented, and that the dentate gyrus (DG) is a preprocessor that performs pattern separation, facilitating storage and recall in CA3. The latter assumption derives partly from the anatomical and physiological properties of DG. However, the major output of DG is from a large number of DG granule cells to a smaller number of CA3 pyramidal cells, which potentially negates the pattern separation performed in the DG. Here, we consider a simple CA3 network model, and consider how it might interact with a previously developed computational model of the DG. The resulting 'standard' DG-CA3 model performs pattern storage and completion well, given a small set of sparse, randomly derived patterns representing entorhinal input to the DG and CA3. However, under many circumstances, the pattern separation achieved in the DG is not as robust in CA3, resulting in a low storage capacity for CA3, compared to previous mathematical estimates of the storage capacity for an autoassociative network of this size. We also examine an often-overlooked aspect of hippocampal anatomy that might increase functionality in the combined DG-CA3 model. Specifically, axon collaterals of CA3 pyramidal cells project 'back' to the DG ('backprojections'), exerting inhibitory effects on granule cells that could potentially ensure that different subpopulations of granule cells are recruited to respond to similar patterns. In the model, addition of such backprojections improves both pattern separation and storage capacity. We also show that the DG-CA3 model with backprojections provides a better fit to empirical data than a model without backprojections. Therefore, we hypothesize that CA3 backprojections might play an important role in hippocampal function. (c) 2010 Wiley-Liss, Inc
PMCID:2976779
PMID: 20683841
ISSN: 1098-1063
CID: 138349