Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13474


Transcriptome-to-reactome biosimulation: Basal forebrain cholinergic neuron neurotrophin signaling [Meeting Abstract]

Phelix, C; Rahimi, O; Colom, L; Perry, G; Ginsberg, S
Background: Neurotrophin signaling of cholinergic basal forebrain (CBF) neurons is critical for survival and plasticity. Microaspiration of identified CBF neurons from postmortem human brain revealed a shift in balance of neurotrophin receptors toward cell death pathways during the progression of Alzheimer's disease (AD). Methods: In this study transcriptomic data from mouse basal forebrain cholinergic neurons (BFCNs; NCBI GEO GSE13379) were used to derive parameters for a deterministic kinetic model of the nerve growth factor (NGF) signaling pathway from Reactome, with TrkB receptor mechanisms added. This method is called Transcriptome-To-Reactome (TTR)-. The biosimulation was performed using COPASI software and included 11 compartments 435 species, and 263 reactions; 245 genes were used to determine initial values of species and kinetic values of reactions. The mouse BFCN model was considered baseline and a biosimulation was run with two doses of NGF, 500 m M and 10 mM, delivered as a bolus and for a 10 and 240 second duration, respectively. This approach tested selectively for p75 NTR and TrkA receptor mediated mechanisms. A second biosimulation test used a combination of 25 mM brain derived neurotrophic factor (BDNF) and 10 m M NGF as a continuous exposure for 60 min duration; this approach evaluated stimulation of p75 NTR TrkA, and TrkB. Based on the human microarray results demonstrating downregulation of TrkA (50%) and TrkB (60%), the corresponding parameters in the TTR biosimulation were decreased by the same amount. Results: Baseline results were validated from published literature on neuronal calcium levels mediated via the phospholipase C-g and inositol- 3-phosphate pathway at both bolus doses of NGF alone. With the corresponding parameters decreased in the TTR biosimulation, Figure 1: A) The reaction flux for c-RAF1 phosphorylation of MEK1 was delayed to peak value by 1.5 min from exposure, but the peak value was increased to 5 times the baseline value; B) Moreover, a slight shift t!
EMBASE:70860407
ISSN: 1552-5260
CID: 460992

USE OF MAGNETIC RESONANCE RENOGRAPHY TO EVALUATE CHANGES IN FUNCTIONAL RENAL VOLUME AND GLOMERULAR FILTRATION RATES IN KIDNEYS FOLLOWING PARTIAL NEPHRECTOMY FOR RENAL TUMORS [Meeting Abstract]

Kang, Stella K; Ito, Timothy; Chandarana, Hersh; Zhang, Jeff L; Lee, Vivian S; Huang, William C
ISI:000302912502292
ISSN: 0022-5347
CID: 2166052

The Potential of Tissue Engineering and Regeneration for Craniofacial Bone

Yamano, Seiichi; Haku, Ken, Ishioka, Mika; Lin, Terry Y; Hunatani, Shigeru; Dai, Jisen; Moursi, Amir M
ORIGINAL:0009963
ISSN: 2161-1122
CID: 1816092

Synaptic integrity in mild cognitive impairment and Alzheimer's disease

Chapter by: Scheff, SW; Ginsberg, Stephen D; Counts, SE; Mufson, EJ
in: Research progress in Alzheimer's disease and dementia : [Vol. 5] by Sun, Miao-Kun [Eds]
New York : Nova Science Publishers, Inc., c2012
pp. 23-49
ISBN: 161942195x
CID: 453032

The crystal structure of the Dess-Martin periodinane

Schrockeneder, Albert; Stichnoth, Desiree; Mayer, Peter; Trauner, Dirk
We report the elusive X-ray structure of the Dess-Martin periodinane (DMP), a hypervalent iodine reagent popular amongst synthetic chemists. In the solid state, the highly crystalline compound forms an intricate coordination polymer held together by intermolecular halogen and hydrogen bonds.
PMCID:3458777
PMID: 23019487
ISSN: 1860-5397
CID: 2485012

Molecular switches and cages

Trauner, Dirk
PMCID:3388875
PMID: 23015835
ISSN: 1860-5397
CID: 2485022

Trans-synaptic spread of tau pathology in vivo

Liu, Li; Drouet, Valerie; Wu, Jessica W; Witter, Menno P; Small, Scott A; Clelland, Catherine; Duff, Karen
Tauopathy in the brain of patients with Alzheimer's disease starts in the entorhinal cortex (EC) and spreads anatomically in a defined pattern. To test whether pathology initiating in the EC spreads through the brain along synaptically connected circuits, we have generated a transgenic mouse model that differentially expresses pathological human tau in the EC and we have examined the distribution of tau pathology at different timepoints. In relatively young mice (10-11 months old), human tau was present in some cell bodies, but it was mostly observed in axons within the superficial layers of the medial and lateral EC, and at the terminal zones of the perforant pathway. In old mice (>22 months old), intense human tau immunoreactivity was readily detected not only in neurons in the superficial layers of the EC, but also in the subiculum, a substantial number of hippocampal pyramidal neurons especially in CA1, and in dentate gyrus granule cells. Scattered immunoreactive neurons were also seen in the deeper layers of the EC and in perirhinal and secondary somatosensory cortex. Immunoreactivity with the conformation-specific tau antibody MC1 correlated with the accumulation of argyrophilic material seen in old, but not young mice. In old mice, axonal human tau immunoreactivity, especially at the endzones of the perforant pathway, was greatly reduced. Relocalization of tau from axons to somatodendritic compartments and propagation of tauopathy to regions outside of the EC correlated with mature tangle formation in neurons in the EC as revealed by thioflavin-S staining. Our data demonstrate propagation of pathology from the EC and support a trans-synaptic mechanism of spread along anatomically connected networks, between connected and vulnerable neurons. In general, the mouse recapitulates the tauopathy that defines the early stages of AD and provides a model for testing mechanisms and functional outcomes associated with disease progression.
PMCID:3270029
PMID: 22312444
ISSN: 1932-6203
CID: 2077132

Tau immunotherapy improves axonal transport as detected in vivo by manganese-enhanced magnetic resonance imaging [Meeting Abstract]

Little, B; Khan, U; Bertrand, A; Rajamohamedsait, H; Hill, L; Hoang, D M; Wadghiri, Y Z; Sigurdsson, E M
Background: Immunotherapy targeting hyperphosphorylated tau is a promising prospect to mitigate the neurodegenerative effects of tauopathies. Assessing the effectiveness of such immunotherapies often involves sacrifice of the animal. However, Manganese-Enhanced Magnetic Resonance Imaging (MEMRI) permits the longitudinal study of neuronal function with minimal risk to the animal. We hypothesize that tract-tracing MEMRI in a mouse model of tau pathology should enable non-invasive monitoring of various tau targeting therapies aimed at improving neuronal integrity. Methods: Twenty-five homozygous JNPL3 tangle transgenic mice underwent MEMRI at 6 months of age. Thirteen of the mice received tau immunotherapy with Tau379-408[P-Ser396,404] in alum adjuvant from 3 months of age, and twelve controls received an adjuvant alone. Imaging studies were performed on a 7-T micro-MRI. Mice were imaged pre-injection, then injected in one nostril with a solution of 2.5 M MnCl 2, under isoflurane anesthesia. Image sets were acquired at 1, 4, 8, 12, 24, 36 and 48 hours, and finally at 7 days (Fig 1). The datasets were processed using ImageJ. Normalized measurements for each mouse were plotted and fitted to a tract tracing bolus model using MATLAB. Fitting enabled the estimation of the timing (Pt) and intensity (Pv) of the bolus peak of Mn, and maximal slope of uptake (Sv). Results: A significant increase in maximal slope of manganese uptake, Sv, was observed in the mitral cell layer (35%, P <.005) and glomerular layer (36%, P <0.02) in treated JNPL3 mice compared to identical controls. There was also a significant increase in bolus peak value, Pv, in the mitral layer in the treated group (7%, P = 0.02). Furthermore, in the immunized mice, there was a strong trend for a decrease in the time to peak value, Pt (-9%P = 0.10), in the mitral cell layer, compared to the controls. Conclusions: Utilizing MEMRI's non-invasive, longitudinal measurements from 1 hour to 7 days, allowed us to detect substantial improvements in neuronal transport following tau immunotherapy. We are analyzing tau pathology in olfactory sections from these mice to assess the correlation of these benefits with clearance of tau lesions, which we have shown previously to occur with this treatment
EMBASE:70859653
ISSN: 1552-5260
CID: 178089

Poor cerebral inflammatory response in eIF2B knock-in mice: implications for the aetiology of vanishing white matter disease

Cabilly, Yuval; Barbi, Mali; Geva, Michal; Marom, Liraz; Chetrit, David; Ehrlich, Marcelo; Elroy-Stein, Orna
BACKGROUND: Mutations in any of the five subunits of eukaryotic translation initiation factor 2B (eIF2B) can lead to an inherited chronic-progressive fatal brain disease of unknown aetiology termed leucoencephalopathy with vanishing white matter (VWM). VWM is one of the most prevalent childhood white matter disorders, which markedly deteriorates after inflammation or exposure to other stressors. eIF2B is a major housekeeping complex that governs the rate of global protein synthesis under normal and stress conditions. A previous study demonstrated that Eif2b5(R132H/R132H) mice suffer delayed white matter development and fail to recover from cuprizone-induced demyelination, although eIF2B enzymatic activity in the mutant brain is reduced by merely 20%. PRINCIPAL FINDINGS: Poor astrogliosis was observed in Eif2b5(R132H/R132H) mice brain in response to systemic stress induced by peripheral injections of lipopolysaccharide (LPS). Even with normal rates of protein synthesis under normal conditions, primary astrocytes and microglia isolated from mutant brains fail to adequately synthesise and secrete cytokines in response to LPS treatment despite proper induction of cytokine mRNAs. CONCLUSIONS: The mild reduction in eIF2B activity prevents the appropriate increase in translation rates upon exposure to the inflammatory stressor LPS. The data underscore the importance of fully-functional translation machinery for efficient cerebral inflammatory response upon insults. It highlights the magnitude of proficient translation rates in restoration of brain homeostasis via microglia-astrocyte crosstalk. This study is the first to suggest the involvement of microglia in the pathology of VWM disease. Importantly, it rationalises the deterioration of clinical symptoms upon exposure of VWM patients to physiological stressors and provides possible explanation for their high phenotypic variability.
PMCID:3464276
PMID: 23056417
ISSN: 1932-6203
CID: 1182062

Analysis of individual 3-repeat tau (3Rtau) and 4-repeat tau (4Rtau) isoforms in postmortem human entorhinal cortex via a qPCR-based assay [Meeting Abstract]

Che, S.; Andreadis, A.; Petkova, E.; Ginsberg, S. D.
BIOSIS:PREV201200722280
ISSN: 1558-3635
CID: 459202