Searched for: school:SOM
Department/Unit:Neuroscience Institute
A single subanesthetic dose of ketamine relieves depression-like behaviors induced by neuropathic pain in rats
Wang, Jing; Goffer, Yossef; Xu, Duo; Tukey, David S; Shamir, D B; Eberle, Sarah E; Zou, Anthony H; Blanck, Thomas J J; Ziff, Edward B
BACKGROUND: Chronic pain is associated with depression. In rodents, pain is often assessed by sensory hypersensitivity, which does not sufficiently measure affective responses. Low-dose ketamine has been used to treat both pain and depression, but it is not clear whether ketamine can relieve depression associated with chronic pain and whether this antidepressant effect depends on its antinociceptive properties. METHODS: The authors examined whether the spared nerve injury model of neuropathic pain induces depressive behavior in rats, using sucrose preference test and forced swim test, and tested whether a subanesthetic dose of ketamine treats spared nerve injury-induced depression. RESULTS: Spared nerve injury-treated rats, compared with control rats, showed decreased sucrose preference (0.719 +/- 0.068 (mean +/- SEM) vs. 0.946 +/- 0.010) and enhanced immobility in the forced swim test (107.3 +/- 14.6s vs. 56.2 +/- 12.5s). Further, sham-operated rats demonstrated depressive behaviors in the acute postoperative period (0.790 +/- 0.062 on postoperative day 2). A single subanesthetic dose of ketamine (10 mg/kg) did not alter spared nerve injury-induced hypersensitivity; however, it treated spared nerve injury-associated depression-like behaviors (0.896 +/- 0.020 for ketamine vs. 0.663 +/- 0.080 for control rats 1 day after administration; 0.858 +/- 0.017 for ketamine vs. 0.683 +/- 0.077 for control rats 5 days after administration). CONCLUSIONS: Chronic neuropathic pain leads to depression-like behaviors. The postoperative period also confers vulnerability to depression, possibly due to acute pain. Sucrose preference test and forced swim test may be used to compliment sensory tests for assessment of pain in animal studies. Low-dose ketamine can treat depression-like behaviors induced by chronic neuropathic pain
PMCID:3222930
PMID: 21934410
ISSN: 1528-1175
CID: 139733
Free-Breathing Radial 3D Fat-Suppressed T1-Weighted Gradient Echo Sequence: A Viable Alternative for Contrast-Enhanced Liver Imaging in Patients Unable to Suspend Respiration
Chandarana H; Block TK; Rosenkrantz AB; Lim RP; Kim D; Mossa DJ; Babb JS; Kiefer B; Lee VS
OBJECTIVE:: To compare free-breathing radially sampled 3D fat suppressed T1-weighted gradient-echo acquisitions (radial volumetric interpolated breath-hold examination [VIBE]) with breath-hold (BH) and free-breathing conventional (rectilinearly sampled k-space) VIBE acquisitions for postcontrast imaging of the liver. MATERIALS AND METHODS:: Eighteen consecutive patients referred for clinically indicated liver magnetic resonance imaging were imaged at 3 T. Three minutes after a single dose of gadolinium contrast injection, free-breathing radial VIBE, BH VIBE, and free-breathing VIBE with 4 averages were acquired in random order with matching sequence parameters. Radial VIBE was acquired with the 'stack-of-stars' scheme, which uses conventional sampling in the slice direction and radial sampling in-plane.All image data sets were evaluated independently by 3 radiologists blinded to patient and sequence information. Each reader scored the following parameters: overall image quality, respiratory motion artifact, pulsation artifact, liver edge sharpness, and hepatic vessel clarity using a 5-point scale, with the highest score indicating the most optimum examination. Mixed model analysis of variance was used to compare sequences in terms of each measure of image quality. RESULTS:: When scores were averaged over readers, there was no statistically significant difference between radial VIBE and BH VIBE regarding overall image quality (P = 0.1015), respiratory motion artifact (P = 1.0), and liver edge sharpness (P = 0.2955). Radial VIBE demonstrated significantly lower pulsation artifact (P < 0.0001), but had lower hepatic vessel clarity (P = 0.0176), when compared with BH VIBE. Radial VIBE had significantly higher image quality scores for all parameters when compared with free-breathing VIBE (P < 0.0001). Acquisition time for BH VIBE was 14 seconds and that of free-breathing radial VIBE and conventional VIBE with multiple averages was 56 seconds each. CONCLUSION:: Radial VIBE can be performed during free breathing for contrast-enhanced imaging of the liver with comparable image quality to BH VIBE. However, further work is necessary to shorten the acquisition time to perform dynamic imaging
PMID: 21577119
ISSN: 1536-0210
CID: 135367
Re-expression of the methylated EDNRB gene in oral squamous cell carcinoma attenuates cancer-induced pain
Viet, Chi T; Ye, Yi; Dang, Dongmin; Lam, David K; Achdjian, Stacy; Zhang, Jianan; Schmidt, Brian L
Endothelin-1 is a vasoactive peptide that activates both the endothelin A (ET(A)) and endothelin B (ET(B)) receptors, and is secreted in high concentrations in many different cancer environments. Although ET(A) receptor activation has an established nociceptive effect in cancer models, the role of ET(B) receptors on cancer pain is controversial. EDNRB, the gene encoding the ET(B) receptor, has been shown to be hypermethylated and transcriptionally silenced in many different cancers. In this study we demonstrate that EDNRB is heavily methylated in human oral squamous cell carcinoma lesions, which are painful, but not methylated in human oral dysplasia lesions, which are typically not painful. ET(B) mRNA expression is reduced in the human oral squamous cell carcinoma lesions as a consequence of EDNRB hypermethylation. Using a mouse cancer pain model, we show that ET(B) receptor re-expression attenuates cancer-induced pain. These findings identify EDNRB methylation as a novel regulatory mechanism in cancer-induced pain and suggest that demethylation therapy targeted at the cancer microenvironment has the potential to thwart pain-producing mechanisms at the source, thus freeing patients of systemic analgesic toxicity.
PMCID:3375027
PMID: 21782343
ISSN: 0304-3959
CID: 155551
Gender differences in neurotrophin and glutamate receptor expression in cholinergic nucleus basalis neurons during the progression of Alzheimer's disease
Counts, Scott E; Che, Shaoli; Ginsberg, Stephen D; Mufson, Elliott J
The higher incidence rate of Alzheimer's disease (AD) in elderly women indicates that gender plays a role in AD pathogenesis. Evidence from clinical and pharmacologic studies, neuropathological examinations, and models of hormone replacement therapy suggest that cholinergic basal forebrain (CBF) cortical projection neurons within the nucleus basalis (NB), which mediate memory and attention and degenerate in AD, may be preferentially vulnerable in elderly women compared to men. CBF neurons depend on nerve growth factor (NGF) and their cognate receptors (trkA and p75(NTR)) for their survival and maintenance. We recently demonstrated a shift in the balance of NGF and its receptors toward cell death mechanisms during the progression of AD. To address whether gender affects NGF signaling system expression within the CBF, we used single cell RNA amplification and custom microarray technologies to compare gene expression profiles of single cholinergic NB neurons in tissue specimens from male and female members of the Religious Orders Study who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), or mild/moderate AD. p75(NTR) expression within male cholinergic NB neurons was unchanged across clinical diagnosis, whereas p75(NTR) mRNA levels in female NB neurons exhibited a approximately 40% reduction in AD compared to NCI. Male AD subjects displayed a approximately 45% reduction in trkA mRNA levels within NB neurons compared to NCI and MCI. In contrast, NB neuronal trkA expression in females was reduced approximately 50% in both MCI and AD compared to NCI. Reduced trkA mRNA levels were associated with poorer global cognitive performance and higher Braak scores in the female subjects. In addition, we found a female-selective reduction in GluR2 AMPA glutamate receptor subunit expression in NB neurons in AD. These data suggest that cholinergic NB neurons in females may be at greater risk for degeneration during the progression of AD and support the concept of gender-specific therapeutic interventions during the preclinical stages of the disease.
PMCID:3155625
PMID: 21397006
ISSN: 0891-0618
CID: 165458
New methods for localizing and manipulating neuronal dynamics in behaving animals
Fee, Michale S; Long, Michael A
Where are the 'prime movers' that control behavior? Which circuits in the brain control the order in which individual motor gestures of a learned behavior are generated, and the speed at which they progress? Here we describe two techniques recently applied to localizing and characterizing the circuitry underlying the generation of vocal sequences in the songbird. The first utilizes small, localized, temperature changes in the brain to perturb the speed of neural dynamics. The second utilizes intracellular manipulation of membrane potential in the freely behaving animal to perturb the dynamics within a single neuron. Both of these techniques are broadly applicable in behaving animals to test hypotheses about the biophysical and circuit dynamics that allow neural circuits to march from one state to the next.
PMCID:3223334
PMID: 21763124
ISSN: 0959-4388
CID: 174600
Response-time variability is related to parent ratings of inattention, hyperactivity, and executive function
Gomez-Guerrero, Lorena; Martin, Cristina Dominguez; Mairena, Maria Angeles; Di Martino, Adriana; Wang, Jing; Mendelsohn, Alan L; Dreyer, Benard P; Isquith, Peter K; Gioia, Gerard; Petkova, Eva; Castellanos, F Xavier
Objective: Individuals with ADHD are often characterized as inconsistent across many contexts. ADHD is also associated with deficits in executive function. We examined the relationships between response time (RT) variability on five brief computer tasks to parents' ratings of ADHD-related features and executive function in a group of children with a broad range of ADHD symptoms from none to full diagnosis. Methods: We tested 98 children (mean age 9.9 +/- 1.4 years; 66 boys) from community clinics on short tasks of executive control (TEC) and the Eriksen Flanker task, while a parent completed the Conners' Parent Rating Scale and Behavior Rating Inventory of Executive Function. Results: Variability for two of the TEC tasks explained significant proportions of the variance of all five ADHD-related Conners' subscales and several executive function subscales. By contrast, variability on the flanker task or mean RTs for any task were not associated with any rating scale. Conclusion: The significant dimensional relationships observed between variability measures and parent ratings supported the utility of RT variability as an objective measure in ADHD and aspects of executive functioning that is superior to RT means or accuracy measures
PMCID:3863378
PMID: 20686098
ISSN: 1557-1246
CID: 138265
Paranodal permeability in "myelin mutants"
Shroff, Seema; Mierzwa, Amanda; Scherer, Steven S; Peles, Elior; Arevalo, Juan C; Chao, Moses V; Rosenbluth, Jack
Fluorescent dextran tracers of varying sizes have been used to assess paranodal permeability in myelinated sciatic nerve fibers from control and three 'myelin mutant' mice, Caspr-null, cst-null, and shaking. We demonstrate that in all of these the paranode is permeable to small tracers (3 kDa and 10 kDa), which penetrate most fibers, and to larger tracers (40 kDa and 70 kDa), which penetrate far fewer fibers and move shorter distances over longer periods of time. Despite gross diminution in transverse bands (TBs) in the Caspr-null and cst-null mice, the permeability of their paranodal junctions is equivalent to that in controls. Thus, deficiency of TBs in these mutants does not increase the permeability of their paranodal junctions to the dextrans we used, moving from the perinodal space through the paranode to the internodal periaxonal space. In addition, we show that the shaking mice, which have thinner myelin and shorter paranodes, show increased permeability to the same tracers despite the presence of TBs. We conclude that the extent of penetration of these tracers does not depend on the presence or absence of TBs but does depend on the length of the paranode and, in turn, on the length of 'pathway 3,' the helical extracellular pathway that passes through the paranode parallel to the lateral edge of the myelin sheath. (c) 2011 Wiley-Liss, Inc
PMCID:3143265
PMID: 21618613
ISSN: 1098-1136
CID: 135571
Two-dimensional adaptation in the auditory forebrain
Sharpee, Tatyana O; Nagel, Katherine I; Doupe, Allison J
Sensory neurons exhibit two universal properties: sensitivity to multiple stimulus dimensions, and adaptation to stimulus statistics. How adaptation affects encoding along primary dimensions is well characterized for most sensory pathways, but if and how it affects secondary dimensions is less clear. We studied these effects for neurons in the avian equivalent of primary auditory cortex, responding to temporally modulated sounds. We showed that the firing rate of single neurons in field L was affected by at least two components of the time-varying sound log-amplitude. When overall sound amplitude was low, neural responses were based on nonlinear combinations of the mean log-amplitude and its rate of change (first time differential). At high mean sound amplitude, the two relevant stimulus features became the first and second time derivatives of the sound log-amplitude. Thus a strikingly systematic relationship between dimensions was conserved across changes in stimulus intensity, whereby one of the relevant dimensions approximated the time differential of the other dimension. In contrast to stimulus mean, increases in stimulus variance did not change relevant dimensions, but selectively increased the contribution of the second dimension to neural firing, illustrating a new adaptive behavior enabled by multidimensional encoding. Finally, we demonstrated theoretically that inclusion of time differentials as additional stimulus features, as seen so prominently in the single-neuron responses studied here, is a useful strategy for encoding naturalistic stimuli, because it can lower the necessary sampling rate while maintaining the robustness of stimulus reconstruction to correlated noise.
PMCID:3296429
PMID: 21753019
ISSN: 0022-3077
CID: 1072452
Spatiotemporal electrophysiological changes in a murine ablation model
Bernstein SA; Duggirala S; Floberg M; Elfvendal P; Kuznekoff LM; Lader JM; Vasquez C; Morley GE
Aims High recurrence rates after complex radiofrequency ablation procedures, such as for atrial fibrillation, remain a major clinical problem. Local electrophysiological changes that occur following cardiac ablation therapy are incompletely described in the literature. The purpose of this study was to determine whether alterations in conduction velocity, action potential duration (APD), and effective refractory period resolve dynamically following cardiac ablation. Methods and results Lesions were delivered to the right ventricle of mice using a subxiphoid approach. The sham-operated control group (SHAM) received the same procedure without energy delivery. Hearts were isolated at 0, 1, 7, 30, and 60 days following the procedure and electrophysiological parameters were obtained using high-resolution optical mapping with a voltage-sensitive dye. Conduction velocity was significantly decreased at the lesion border in the 0, 7, and 30 day groups compared to SHAM. APD(70) at the lesion border was significantly increased at all time points compared to SHAM. Effective refractory period was significantly increased at the lesion border at 0, 1, 7, and 30 days but not at 60 days post-ablation. This study demonstrated that post-ablation electrophysiological changes take place immediately following energy delivery and resolve within 60 days. Conclusions Cardiac ablation causes significant electrophysiological changes both within the lesion and beyond the border zone. Late recovery of electrical conduction in individual lesions is consistent with clinical data demonstrating that arrhythmia recurrence is associated with failure to maintain bi-directional conduction block
PMCID:3180237
PMID: 21712278
ISSN: 1532-2092
CID: 135529
Minimum Information about a Cardiac Electrophysiology Experiment (MICEE): standardised reporting for model reproducibility, interoperability, and data sharing
Quinn, T A; Granite, S; Allessie, M A; Antzelevitch, C; Bollensdorff, C; Bub, G; Burton, R A B; Cerbai, E; Chen, P S; Delmar, M; Difrancesco, D; Earm, Y E; Efimov, I R; Egger, M; Entcheva, E; Fink, M; Fischmeister, R; Franz, M R; Garny, A; Giles, W R; Hannes, T; Harding, S E; Hunter, P J; Iribe, G; Jalife, J; Johnson, C R; Kass, R S; Kodama, I; Koren, G; Lord, P; Markhasin, V S; Matsuoka, S; McCulloch, A D; Mirams, G R; Morley, G E; Nattel, S; Noble, D; Olesen, S P; Panfilov, A V; Trayanova, N A; Ravens, U; Richard, S; Rosenbaum, D S; Rudy, Y; Sachs, F; Sachse, F B; Saint, D A; Schotten, U; Solovyova, O; Taggart, P; Tung, L; Varro, A; Volders, P G; Wang, K; Weiss, J N; Wettwer, E; White, E; Wilders, R; Winslow, R L; Kohl, P
Cardiac experimental electrophysiology is in need of a well-defined Minimum Information Standard for recording, annotating, and reporting experimental data. As a step towards establishing this, we present a draft standard, called Minimum Information about a Cardiac Electrophysiology Experiment (MICEE). The ultimate goal is to develop a useful tool for cardiac electrophysiologists which facilitates and improves dissemination of the minimum information necessary for reproduction of cardiac electrophysiology research, allowing for easier comparison and utilisation of findings by others. It is hoped that this will enhance the integration of individual results into experimental, computational, and conceptual models. In its present form, this draft is intended for assessment and development by the research community. We invite the reader to join this effort, and, if deemed productive, implement the Minimum Information about a Cardiac Electrophysiology Experiment standard in their own work.
PMCID:3190048
PMID: 21745496
ISSN: 0079-6107
CID: 166490