Searched for: school:SOM
Department/Unit:Neuroscience Institute
Participation of brainstem monoaminergic nuclei in behavioral depression
Lin, Yan; Sarfraz, Yasmeen; Jensen, Ashley; Dunn, Adrian J; Stone, Eric A
Several lines of research have now suggested the controversial hypothesis that the central noradrenergic system acts to exacerbate depression as opposed to having an antidepressant function. If correct, lesions of this system should increase resistance to depression, which has been partially but weakly supported by previous studies. The present study reexamined this question using two more recent methods to lesion noradrenergic neurons in mice: intraventricular (ivt) administration of either the noradrenergic neurotoxin, DSP4, or of a dopamine-beta-hydroxylase-saporin immunotoxin (DBH-SAP ITX) prepared for mice. Both agents given 2weeks prior were found to significantly increase resistance to depressive behavior in several tests including acute and repeated forced swims, tail suspension and endotoxin-induced anhedonia. Both agents also increased locomotor activity in the open field. Cell counts of brainstem monoaminergic neurons, however, showed that both methods produced only partial lesions of the locus coeruleus and also affected the dorsal raphe or ventral tegmental area. Both the cell damage and the antidepressant and hyperactive effects of ivt DSP4 were prevented by a prior i.p. injection of the NE uptake blocker, reboxetine. The results are seen to be consistent with recent pharmacological experiments showing that noradrenergic and serotonergic systems function to inhibit active behavior. Comparison with previous studies utilizing more complete and selective LC lesions suggest that mouse strain, lesion size or involvement of multiple neuronal systems are critical variables in the behavioral and affective effects of monoaminergic lesions and that antidepressant effects and hyperactivity may be more likely to occur if lesions are partial and/or involve multiple monoaminergic systems
PMCID:3199359
PMID: 21893082
ISSN: 1873-5177
CID: 139732
Identifying regional cardiac abnormalities from myocardial strains using nontracking-based strain estimation and spatio-temporal tensor analysis
Qian, Zhen; Liu, Qingshan; Metaxas, Dimitris N; Axel, Leon
Myocardial strain is a critical indicator of many cardiac diseases and dysfunctions. The goal of this paper is to extract and use the myocardial strain pattern from tagged magnetic resonance imaging (MRI) to identify and localize regional abnormal cardiac function in human subjects. In order to extract the myocardial strains from the tagged images, we developed a novel nontracking-based strain estimation method for tagged MRI. This method is based on the direct extraction of tag deformation, and therefore avoids some limitations of conventional displacement or tracking-based strain estimators. Based on the extracted spatio-temporal strain patterns, we have also developed a novel tensor-based classification framework that better conserves the spatio-temporal structure of the myocardial strain pattern than conventional vector-based classification algorithms. In addition, the tensor-based projection function keeps more of the information of the original feature space, so that abnormal tensors in the subspace can be back-projected to reveal the regional cardiac abnormality in a more physically meaningful way. We have tested our novel methods on 41 human image sequences, and achieved a classification rate of 87.80%. The regional abnormalities recovered from our algorithm agree well with the patient's pathology and clinical image interpretation, and provide a promising avenue for regional cardiac function analysis.
PMID: 21606022
ISSN: 0278-0062
CID: 962762
The extracellular region of Lrp4 is sufficient to mediate neuromuscular synapse formation
Gomez, Andrea M; Burden, Steven J
Neuromuscular synapse formation requires an exchange of signals between motor neurons and muscle. Agrin, supplied by motor neurons, binds to Lrp4 in muscle, stimulating phosphorylation of MuSK and recruitment of a signaling complex essential for synapse-specific transcription and anchoring of key proteins in the postsynaptic membrane. Lrp4, like the LDLR and other Lrp-family members, contains an intracellular region with motifs that can regulate receptor trafficking, as well as assembly of an intracellular signaling complex. Here, we show that the intracellular region of Lrp4 is dispensable for Agrin to stimulate MuSK phosphorylation and clustering of acetylcholine receptors in cultured myotubes. Moreover, muscle-selective expression of a Lrp4-CD4 chimera, composed of the extracellular and transmembrane regions of Lrp4 and the intracellular region of CD4, rescues neuromuscular synapse formation and the neonatal lethality of lrp4 mutant mice, demonstrating that Lrp4, lacking the Lrp4 intracellular region, is sufficient for presynaptic and postsynaptic differentiation. Developmental Dynamics 240:2626-2633, 2011. (c) 2011 Wiley Periodicals, Inc
PMCID:3213289
PMID: 22038977
ISSN: 1097-0177
CID: 141080
Full report from the first annual Heart Rhythm Society Research Forum: a vision for our research future, "dream, discover, develop, deliver"
Albert, Christine M; Chen, Peng-Sheng; Anderson, Mark E; Cain, Michael E; Fishman, Glenn I; Narayan, Sanjiv M; Olgin, Jeffrey E; Spooner, Peter M; Stevenson, William G; Van Wagoner, David R; Packer, Douglas L
PMCID:3726207
PMID: 22079558
ISSN: 1547-5271
CID: 347282
Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons
Karklin, Yan; Simoncelli, Eero P
Efficient coding provides a powerful principle for explaining early sensory coding. Most attempts to test this principle have been limited to linear, noiseless models, and when applied to natural images, have yielded oriented filters consistent with responses in primary visual cortex. Here we show that an efficient coding model that incorporates biologically realistic ingredients - input and output noise, nonlinear response functions, and a metabolic cost on the firing rate - predicts receptive fields and response nonlinearities similar to those observed in the retina. Specifically, we develop numerical methods for simultaneously learning the linear filters and response nonlinearities of a population of model neurons, so as to maximize information transmission subject to metabolic costs. When applied to an ensemble of natural images, the method yields filters that are center-surround and nonlinearities that are rectifying. The filters are organized into two populations, with On- and Off-centers, which independently tile the visual space. As observed in the primate retina, the Off-center neurons are more numerous and have filters with smaller spatial extent. In the absence of noise, our method reduces to a generalized version of independent components analysis, with an adapted nonlinear "contrast" function; in this case, the optimal filters are localized and oriented.
PMCID:4532291
PMID: 26273180
ISSN: 1049-5258
CID: 1931292
The retinal mosaics of opsin expression in invertebrates and vertebrates
Rister, Jens; Desplan, Claude
Color vision is found in many invertebrate and vertebrate species. It is the ability to discriminate objects based on the wavelength of emitted light independent of intensity. As it requires the comparison of at least two photoreceptor types with different spectral sensitivities, this process is often mediated by a mosaic made of several photoreceptor types. In this review, we summarize the current knowledge about the formation of retinal mosaics and the regulation of photopigment (opsin) expression in the fly, mouse, and human retina. Despite distinct evolutionary origins, as well as major differences in morphology and phototransduction machineries, there are significant similarities in the stepwise cell-fate decisions that lead from progenitor cells to terminally differentiated photoreceptors that express a particular opsin. Common themes include (i) the use of binary transcriptional switches that distinguish classes of photoreceptors, (ii) the use of gradients of signaling molecules for regional specializations, (iii) stochastic choices that pattern the retina, and (iv) the use of permissive factors with multiple roles in different photoreceptor types.
PMCID:3190030
PMID: 21557510
ISSN: 1932-846x
CID: 1694402
Circulating Abeta40 negatively influences plasma BDNF levels [Meeting Abstract]
Pomara, N; Bruno, D; Pillai, A; Nierenberg, J J; Ginsberg, S D; Mehta, P D; Zetterberg, H; Blennow, K; Buckley, P F
Background: Reductions in brain-derived neurotrophic factor (BDNF) have been implicated in the pathophysiology of depression. Nevertheless, the factors influencing central and peripheral BDNF levels are still poorly understood. Cerebral microvascular endothelial cells are known to be a major source of BDNF within the brain. Exposure of these cells to amyloid beta (Abeta), which may play a role in the pathophysiology of late-life depression, results in cell death or injury with significant reductions in BDNF secretion. Moreover, in rodents, infusion of Abeta40 into the carotid artery resulted in a disruption of endothelial cells, which was not observed with Abeta42 infusion. Therefore, we hypothesized that concentrations of plasma Abeta40, but not Abeta42, would have a negative effect on plasma BDNF levels. Methods: We examined BDNF and Abeta levels in plasma via immunoblotting and ELISA assays, respectively, from 88 subjects with intact cognition (no dementia and a Mini-Mental State Exam score of at least 28) and no gross MRI abnormalities other than white matter hyperintensities. As these subjects were originally recruited for a study on major depressive disorder (MDD), 45 had MDD and 43 were age-matched controls. Results: Consistent with our prediction, Abeta40 levels were inversely correlated with BDNF concentrations (p<.001), whereas Abeta42 levels were independent of BDNF expression (p=.231). This pattern was similar when MDD and control subjects were analyzed separately. Discussion: Our results are consistent with the hypothesis that cerebral endothelial cells are a contributing source of peripheral BDNF and that their disruption by circulating Abeta40 results in reduction in BDNF. However, these preliminary findings need confirmation, and the mechanisms for our observation, including Abeta40-induced cerebral endothelial cell dysfunction, will have to be clarified
EMBASE:70607253
ISSN: 0893-133x
CID: 463332
Acetylcholinesterase inhibitors rapidly activate Trk neurotrophin receptors in the mouse hippocampus
Autio, Henri; Matlik, Kert; Rantamaki, Tomi; Lindemann, Lothar; Hoener, Marius C; Chao, Moses; Arumae, Urmas; Castren, Eero
Acetylcholinesterase inhibitors are first-line therapies for Alzheimer's disease. These drugs increase cholinergic tone in the target areas of the cholinergic neurons of the basal forebrain. Basal forebrain cholinergic neurons are dependent upon trophic support by nerve growth factor (NGF) through its neurotrophin receptor, TrkA. In the present study, we investigated whether the acetylcholinesterase inhibitors donepezil and galantamine could influence neurotrophin receptor signaling in the brain. Acute administration of donepezil (3 mg/kg, i.p.) led to the rapid autophosphorylation of TrkA and TrkB neurotrophin receptors in the adult mouse hippocampus. Similarly, galantamine dose-dependently (3, 9 mg/kg, i.p.) increased TrkA and TrkB phosphorylation in the mouse hippocampus. Both treatments also increased the phosphorylation of transcription factor CREB and tended to increase the phosphorylation of AKT kinase but did not alter the activity of MAPK42/44. Chronic treatment with galantamine (3 mg/kg, i.p., 14 days), did not induce changes in hippocampal NGF and BDNF synthesis or protein levels. Our findings show that acetylcholinesterase inhibitors are capable of rapidly activating hippocampal neurotrophin signaling and thus suggest that therapies targeting Trk signaling may already be in clinical use in the treatment of AD
PMCID:3928503
PMID: 21820453
ISSN: 1873-7064
CID: 139925
Identifying transient protein-protein interactions in EphB2 signaling by blue native PAGE and mass spectrometry
Darie, Costel C; Deinhardt, Katrin; Zhang, Guoan; Cardasis, Helene S; Chao, Moses V; Neubert, Thomas A
Receptor tyrosine kinases (RTKs) are proteins that upon ligand stimulation undergo dimerization and autophosphorylation. Eph receptors (EphRs) are RTKs that are found in different cell types, from both tissues that are developing and from mature tissues, and play important roles in the development of the central nervous system and peripheral nervous system. EphRs also play roles in synapse formation, neural crest formation, angiogenesis and in remodeling the vascular system. Interaction of EphRs with their ephrin ligands lead to activation of signal transduction pathways and formation of many transient protein-protein interactions that ultimately leads to cytoskeletal remodeling. However, the sequence of events at the molecular level is not well understood. We used blue native PAGE and MS to analyze the transient protein-protein interactions that resulted from the stimulation of EphB2 receptors by their ephrinB1-Fc ligands. We analyzed the phosphotyrosine-containing protein complexes immunoprecipitated from the cell lysates of both unstimulated (-) and ephrinB1-Fc-stimulated (+) NG108 cells. Our experiments allowed us to identify many signaling proteins, either known to be part of EphB2 signaling or new for this pathway, which are involved in transient protein-protein interactions upon ephrinB1-Fc stimulation. These data led us to investigate the roles of proteins such as FAK, WAVEs and Nischarin in EphB2 signaling
PMCID:3563432
PMID: 21932443
ISSN: 1615-9861
CID: 145796
Unique Properties of the ATP-Sensitive K+ Channel in the Mouse Ventricular Cardiac Conduction System
Bao, Li; Kefaloyianni, Eirini; Lader, Joshua; Hong, Miyoun; Morley, Gregory; Fishman, Glenn I; Sobie, Eric A; Coetzee, William A
Background- The specialized cardiac conduction system (CCS) expresses a unique complement of ion channels that confer a specific electrophysiological profile. ATP-sensitive potassium (K(ATP)) channels in these myocytes have not been systemically investigated. Methods and Results- We recorded K(ATP) channels in isolated CCS myocytes using Cntn2-EGFP reporter mice. The CCS K(ATP) channels were less sensitive to inhibitory cytosolic ATP compared with ventricular channels and more strongly activated by MgADP. They also had a smaller slope conductance. The 2 types of channels had similar intraburst open and closed times, but the CCS K(ATP) channel had a prolonged interburst closed time. CCS K(ATP) channels were strongly activated by diazoxide and less by levcromakalim, whereas the ventricular K(ATP) channel had a reverse pharmacological profile. CCS myocytes express elevated levels of Kir6.1 but reduced Kir6.2 and SUR2A mRNA compared with ventricular myocytes (SUR1 expression was negligible). SUR2B mRNA expression was higher in CCS myocytes relative to SUR2A. Canine Purkinje fibers expressed higher levels of Kir6.1 and SUR2B protein relative to the ventricle. Numeric simulation predicts a high sensitivity of the Purkinje action potential to changes in ATP:ADP ratio. Cardiac conduction time was prolonged by low-flow ischemia in isolated, perfused mouse hearts, which was prevented by glibenclamide. Conclusions- These data imply a differential electrophysiological response (and possible contribution to arrhythmias) of the ventricular CCS to K(ATP) channel opening during periods of ischemia
PMCID:3247655
PMID: 21984445
ISSN: 1941-3084
CID: 148727