Searched for: school:SOM
Department/Unit:Neuroscience Institute
MP-RAVE: IR-Prepared T1 -Weighted Radial Stack-of-Stars 3D GRE imaging with retrospective motion correction
Solomon, Eddy; Lotan, Eyal; Zan, Elcin; Sodickson, Daniel K; Block, Kai Tobias; Chandarana, Hersh
PURPOSE/OBJECTIVE:-weighted radial stack-of-stars 3D gradient echo (GRE) sequence with comparable image quality to conventional MP-RAGE and to demonstrate how the radial acquisition scheme can be utilized for additional retrospective motion correction to improve robustness to head motion. METHODS:The proposed sequence, named MP-RAVE, has been derived from a previously described radial stack-of-stars 3D GRE sequence (RAVE) and includes a 180° inversion recovery pulse that is generated once for every stack of radial views. The sequence is combined with retrospective 3D motion correction to improve robustness. The effectiveness has been evaluated in phantoms and healthy volunteers and compared to conventional MP-RAGE acquisition. RESULTS:MP-RAGE and MP-RAVE anatomical images were rated "good" to "excellent" in overall image quality, with artifact level between "mild" and "no artifacts", and with no statistically significant difference between methods. During head motion, MP-RAVE showed higher inherent robustness with artifacts confined to local brain regions. In combination with motion correction, MP-RAVE provided noticeably improved image quality during different head motion and showed statistically significant improvement in image sharpness. CONCLUSION/CONCLUSIONS:MP-RAVE provides comparable image quality and contrast to conventional MP-RAGE with improved robustness to head motion. In combination with retrospective 3D motion correction, MP-RAVE can be a useful alternative to MP-RAGE, especially in non-cooperative or pediatric patients.
PMID: 36763847
ISSN: 1522-2594
CID: 5426992
Spiking Recurrent Neural Networks Represent Task-Relevant Neural Sequences in Rule-Dependent Computation
Xue, Xiaohe; Wimmer, Ralf D; Halassa, Michael M; Chen, Zhe Sage
BACKGROUND/UNASSIGNED:Prefrontal cortical neurons play essential roles in performing rule-dependent tasks and working memory-based decision making. METHODS/UNASSIGNED:Motivated by PFG recordings of task-performing mice, we developed an excitatory-inhibitory spiking recurrent neural network (SRNN) to perform a rule-dependent two-alternative forced choice (2AFC) task. We imposed several important biological constraints onto the SRNN, and adapted spike frequency adaptation (SFA) and SuperSpike gradient methods to train the SRNN efficiently. RESULTS/UNASSIGNED:The trained SRNN produced emergent rule-specific tunings in single-unit representations, showing rule-dependent population dynamics that resembled experimentally observed data. Under varying test conditions, we manipulated the SRNN parameters or configuration in computer simulations, and we investigated the impacts of rule-coding error, delay duration, recurrent weight connectivity and sparsity, and excitation/inhibition (E/I) balance on both task performance and neural representations. CONCLUSIONS/UNASSIGNED:Overall, our modeling study provides a computational framework to understand neuronal representations at a fine timescale during working memory and cognitive control, and provides new experimentally testable hypotheses in future experiments.
PMCID:10530699
PMID: 37771569
ISSN: 1866-9956
CID: 5725422
Olfactory navigation in arthropods
Steele, Theresa J; Lanz, Aaron J; Nagel, Katherine I
Using odors to find food and mates is one of the most ancient and highly conserved behaviors. Arthropods from flies to moths to crabs use broadly similar strategies to navigate toward odor sources-such as integrating flow information with odor information, comparing odor concentration across sensors, and integrating odor information over time. Because arthropods share many homologous brain structures-antennal lobes for processing olfactory information, mechanosensors for processing flow, mushroom bodies (or hemi-ellipsoid bodies) for associative learning, and central complexes for navigation, it is likely that these closely related behaviors are mediated by conserved neural circuits. However, differences in the types of odors they seek, the physics of odor dispersal, and the physics of locomotion in water, air, and on substrates mean that these circuits must have adapted to generate a wide diversity of odor-seeking behaviors. In this review, we discuss common strategies and specializations observed in olfactory navigation behavior across arthropods, and review our current knowledge about the neural circuits subserving this behavior. We propose that a comparative study of arthropod nervous systems may provide insight into how a set of basic circuit structures has diversified to generate behavior adapted to different environments.
PMID: 36658447
ISSN: 1432-1351
CID: 5419252
Systems-level analyses of protein-protein interaction network dysfunctions via epichaperomics identify cancer-specific mechanisms of stress adaptation
Rodina, Anna; Xu, Chao; Digwal, Chander S; Joshi, Suhasini; Patel, Yogita; Santhaseela, Anand R; Bay, Sadik; Merugu, Swathi; Alam, Aftab; Yan, Pengrong; Yang, Chenghua; Roychowdhury, Tanaya; Panchal, Palak; Shrestha, Liza; Kang, Yanlong; Sharma, Sahil; Almodovar, Justina; Corben, Adriana; Alpaugh, Mary L; Modi, Shanu; Guzman, Monica L; Fei, Teng; Taldone, Tony; Ginsberg, Stephen D; Erdjument-Bromage, Hediye; Neubert, Thomas A; Manova-Todorova, Katia; Tsou, Meng-Fu Bryan; Young, Jason C; Wang, Tai; Chiosis, Gabriela
Systems-level assessments of protein-protein interaction (PPI) network dysfunctions are currently out-of-reach because approaches enabling proteome-wide identification, analysis, and modulation of context-specific PPI changes in native (unengineered) cells and tissues are lacking. Herein, we take advantage of chemical binders of maladaptive scaffolding structures termed epichaperomes and develop an epichaperome-based 'omics platform, epichaperomics, to identify PPI alterations in disease. We provide multiple lines of evidence, at both biochemical and functional levels, demonstrating the importance of these probes to identify and study PPI network dysfunctions and provide mechanistically and therapeutically relevant proteome-wide insights. As proof-of-principle, we derive systems-level insight into PPI dysfunctions of cancer cells which enabled the discovery of a context-dependent mechanism by which cancer cells enhance the fitness of mitotic protein networks. Importantly, our systems levels analyses support the use of epichaperome chemical binders as therapeutic strategies aimed at normalizing PPI networks.
PMCID:10290137
PMID: 37353488
ISSN: 2041-1723
CID: 5538522
Nova proteins direct synaptic integration of somatostatin interneurons through activity-dependent alternative splicing
Ibrahim, Leena Ali; Wamsley, Brie; Alghamdi, Norah; Yusuf, Nusrath; Sevier, Elaine; Hairston, Ariel; Sherer, Mia; Jaglin, Xavier Hubert; Xu, Qing; Guo, Lihua; Khodadadi-Jamayran, Alireza; Favuzzi, Emilia; Yuan, Yuan; Dimidschstein, Jordane; Darnell, Robert B; Fishell, Gordon
Somatostatin interneurons are the earliest born population of cortical inhibitory cells. They are crucial to support normal brain development and function; however, the mechanisms underlying their integration into nascent cortical circuitry are not well understood. In this study, we begin by demonstrating that the maturation of somatostatin interneurons in mouse somatosensory cortex is activity dependent. We then investigated the relationship between activity, alternative splicing, and synapse formation within this population. Specifically, we discovered that the Nova family of RNA-binding proteins are activity-dependent and are essential for the maturation of somatostatin interneurons, as well as their afferent and efferent connectivity. Within this population, Nova2 preferentially mediates the alternative splicing of genes required for axonal formation and synaptic function independently from its effect on gene expression. Hence, our work demonstrates that the Nova family of proteins through alternative splicing are centrally involved in coupling developmental neuronal activity to cortical circuit formation.
PMID: 37347149
ISSN: 2050-084x
CID: 5538472
Calcitonin Related Polypeptide Alpha Mediates Oral Cancer Pain
Tu, Nguyen Huu; Inoue, Kenji; Lewis, Parker K; Khan, Ammar; Hwang, Jun Hyeong; Chokshi, Varun; Dabovic, Branka Brukner; Selvaraj, Shanmugapriya; Bhattacharya, Aditi; Dubeykovskaya, Zinaida; Pinkerton, Nathalie M; Bunnett, Nigel W; Loomis, Cynthia A; Albertson, Donna G; Schmidt, Brian L
Oral cancer patients suffer pain at the site of the cancer. Calcitonin gene related polypeptide (CGRP), a neuropeptide expressed by a subset of primary afferent neurons, promotes oral cancer growth. CGRP also mediates trigeminal pain (migraine) and neurogenic inflammation. The contribution of CGRP to oral cancer pain is investigated in the present study. The findings demonstrate that CGRP-immunoreactive (-ir) neurons and neurites innervate orthotopic oral cancer xenograft tumors in mice. Cancer increases anterograde transport of CGRP in axons innervating the tumor, supporting neurogenic secretion as the source of CGRP in the oral cancer microenvironment. CGRP antagonism reverses oral cancer nociception in preclinical oral cancer pain models. Single-cell RNA-sequencing is used to identify cell types in the cancer microenvironment expressing the CGRP receptor components, receptor activity modifying protein 1 Ramp1 and calcitonin receptor like receptor (CLR, encoded by Calcrl). Ramp1 and Calcrl transcripts are detected in cells expressing marker genes for Schwann cells, endothelial cells, fibroblasts and immune cells. Ramp1 and Calcrl transcripts are more frequently detected in cells expressing fibroblast and immune cell markers. This work identifies CGRP as mediator of oral cancer pain and suggests the antagonism of CGRP to alleviate oral cancer pain.
PMCID:10341289
PMID: 37443709
ISSN: 2073-4409
CID: 5535282
ACSL4: biomarker, mediator and target in quadruple negative breast cancer
Monaco, Marie E
Breast cancer is a heterogeneous disease for which effective treatment depends on correct categorization of its molecular subtype. For the last several decades this determination has relied on hormone receptor status for estrogen, progesterone and HER2. More recently, gene expression data have been generated that further stratify both receptor-positive and receptor-negative cancers. The fatty acid-activating enzyme, ACSL4, has been demonstrated to play a role in the malignant phenotype of a variety of cancers, including breast. This lipid metabolic enzyme is differentially expressed as a function of subtype in breast tumors, with highest expression observed in the mesenchymal (claudin low) and basal-like subtypes. Here we review data that support the potential of utilizing ACSL4 status as both a biomarker of molecular subtype and a predictor of response to a variety of targeted and non-targeted treatment regimens. Based on these findings, we suggest 3 expanded roles for ACSL4: 1. as a biomarker for classification of breast cancer subtypes; 2. as a predictor of sensitivity to hormone-based and certain other therapies; and 3. as a target for the development of new treatment modalities.
PMCID:10259258
PMID: 37306503
ISSN: 1949-2553
CID: 5533612
Oxytocin promotes prefrontal population activity via the PVN-PFC pathway to regulate pain
Liu, Yaling; Li, Anna; Bair-Marshall, Chloe; Xu, Helen; Jee, Hyun Jung; Zhu, Elaine; Sun, Mengqi; Zhang, Qiaosheng; Lefevre, Arthur; Chen, Zhe Sage; Grinevich, Valery; Froemke, Robert C; Wang, Jing
Neurons in the prefrontal cortex (PFC) can provide top-down regulation of sensory-affective experiences such as pain. Bottom-up modulation of sensory coding in the PFC, however, remains poorly understood. Here, we examined how oxytocin (OT) signaling from the hypothalamus regulates nociceptive coding in the PFC. In vivo time-lapse endoscopic calcium imaging in freely behaving rats showed that OT selectively enhanced population activity in the prelimbic PFC in response to nociceptive inputs. This population response resulted from the reduction of evoked GABAergic inhibition and manifested as elevated functional connectivity involving pain-responsive neurons. Direct inputs from OT-releasing neurons in the paraventricular nucleus (PVN) of the hypothalamus are crucial to maintaining this prefrontal nociceptive response. Activation of the prelimbic PFC by OT or direct optogenetic stimulation of oxytocinergic PVN projections reduced acute and chronic pain. These results suggest that oxytocinergic signaling in the PVN-PFC circuit constitutes a key mechanism to regulate cortical sensory processing.
PMID: 37023755
ISSN: 1097-4199
CID: 5463882
Flexible control of representational dynamics in a disinhibition-based model of decision-making
Shen, Bo; Louie, Kenway; Glimcher, Paul
Inhibition is crucial for brain function, regulating network activity by balancing excitation and implementing gain control. Recent evidence suggests that beyond simply inhibiting excitatory activity, inhibitory neurons can also shape circuit function through disinhibition. While disinhibitory circuit motifs have been implicated in cognitive processes, including learning, attentional selection, and input gating, the role of disinhibition is largely unexplored in the study of decision-making. Here, we show that disinhibition provides a simple circuit motif for fast, dynamic control of network state and function. This dynamic control allows a disinhibition-based decision model to reproduce both value normalization and winner-take-all dynamics, the two central features of neurobiological decision-making captured in separate existing models with distinct circuit motifs. In addition, the disinhibition model exhibits flexible attractor dynamics consistent with different forms of persistent activity seen in working memory. Fitting the model to empirical data shows it captures well both the neurophysiological dynamics of value coding and psychometric choice behavior. Furthermore, the biological basis of disinhibition provides a simple mechanism for flexible top-down control of the network states, enabling the circuit to capture diverse task-dependent neural dynamics. These results suggest a biologically plausible unifying mechanism for decision-making and emphasize the importance of local disinhibition in neural processing.
PMID: 37261426
ISSN: 2050-084x
CID: 5538282
Efficacy and Safety of Avalglucosidase Alfa in Patients With Late-Onset Pompe Disease After 97 Weeks: A Phase 3 Randomized Clinical Trial
Kishnani, Priya S; Diaz-Manera, Jordi; Toscano, Antonio; Clemens, Paula R; Ladha, Shafeeq; Berger, Kenneth I; Kushlaf, Hani; Straub, Volker; Carvalho, Gerson; Mozaffar, Tahseen; Roberts, Mark; Attarian, Shahram; Chien, Yin-Hsiu; Choi, Young-Chul; Day, John W; Erdem-Ozdamar, Sevim; Illarioshkin, Sergey; Goker-Alpan, Ozlem; Kostera-Pruszczyk, Anna; van der Ploeg, Ans T; An Haack, Kristina; Huynh-Ba, Olivier; Tammireddy, Swathi; Thibault, Nathan; Zhou, Tianyue; Dimachkie, Mazen M; Schoser, Benedikt
IMPORTANCE:In the previously reported Comparative Enzyme Replacement Trial With neoGAA Versus rhGAA (COMET) trial, avalglucosidase alfa treatment for 49 weeks showed clinically meaningful improvements in upright forced vital capacity (FVC) percent predicted and 6-minute walk test (6MWT) compared with alglucosidase alfa. OBJECTIVE:To report avalglucosidase alfa treatment outcomes during the COMET trial extension. DESIGN, SETTING, AND PARTICIPANTS:This phase 3 double-blind randomized clinical trial with crossover in the extension period enrolled patients 3 years and older with previously untreated late-onset Pompe disease (LOPD) between November 2, 2016, and February 10, 2021, with primary analysis after 49 weeks. Patients were treated at 55 referral centers in 20 countries. Efficacy outcomes were assessed at 97 weeks and safety outcomes to last follow-up, with data cutoff at February 10, 2021. Data were analyzed from May to June 2021. INTERVENTIONS:Random assignment (1:1) to receive 20 mg/kg of avalglucosidase alfa or alglucosidase alfa by intravenous infusion every other week for 49 weeks; thereafter, all patients received 20 mg/kg of avalglucosidase alfa every other week. MAIN OUTCOMES AND MEASURES:The primary outcome was the least squares (LS) mean change from baseline in FVC percent predicted. Secondary outcomes included the LS mean change from baseline in 6MWT, muscle strength, motor function, quality of life, and disease biomarkers. Safety and tolerability were also assessed. RESULTS:Of 100 participants from the double-blind treatment period, 95 entered the extension period. Of these, 51 (54%) were men, and the mean (range) age was 48.3 (10-79) years. At the start of this study, mean upright FVC percent predicted was similar between treatment arms, and 6MWT distance was greater in the avalglucosidase alfa arm. From baseline to week 97, LS mean (SE) FVC percent predicted increased by 2.65 (1.05) for those who continued avalglucosidase alfa and 0.36 (1.12) for those who switched to avalglucosidase alfa. The LS mean (SE) 6MWT distance increased by 18.60 (12.01) m and 4.56 (12.44) m, respectively. For participants who switched to avalglucosidase alfa, FVC percent predicted remained stable (LS mean [SE] change from week 49 to 97, 0.09 [0.88]) and 6MWT distance improved (LS mean [SE] change from week 49 to 97, 5.33 [10.81] m). Potentially treatment-related adverse events were reported in 29 patients (56.9%) who continued avalglucosidase alfa and in 25 patients (56.8%) who switched. CONCLUSIONS AND RELEVANCE:In this randomized clinical trial extension, maintenance of positive clinical outcomes was demonstrated for patients continuing avalglucosidase alfa treatment and, to a lesser extent, patients who switched from alglucosidase alfa. No new safety concerns were observed. TRIAL REGISTRATION:ClinicalTrials.gov Identifier: NCT02782741.
PMCID:10087094
PMID: 37036722
ISSN: 2168-6157
CID: 5533232