Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14035


Disrupting mechanotransduction decreases fibrosis and contracture in split-thickness skin grafting

Chen, Kellen; Henn, Dominic; Januszyk, Michael; Barrera, Janos A; Noishiki, Chikage; Bonham, Clark A; Griffin, Michelle; Tevlin, Ruth; Carlomagno, Theresa; Shannon, Tara; Fehlmann, Tobias; Trotsyuk, Artem A; Padmanabhan, Jagannath; Sivaraj, Dharshan; Perrault, David P; Zamaleeva, Alsu I; Mays, Chyna J; Greco, Autumn H; Kwon, Sun Hyung; Leeolou, Melissa C; Huskins, Savana L; Steele, Sydney R; Fischer, Katharina S; Kussie, Hudson C; Mittal, Smiti; Mermin-Bunnell, Alana M; Diaz Deleon, Nestor M; Lavin, Christopher; Keller, Andreas; Longaker, Michael T; Gurtner, Geoffrey C
Burns and other traumatic injuries represent a substantial biomedical burden. The current standard of care for deep injuries is autologous split-thickness skin grafting (STSG), which frequently results in contractures, abnormal pigmentation, and loss of biomechanical function. Currently, there are no effective therapies that can prevent fibrosis and contracture after STSG. Here, we have developed a clinically relevant porcine model of STSG and comprehensively characterized porcine cell populations involved in healing with single-cell resolution. We identified an up-regulation of proinflammatory and mechanotransduction signaling pathways in standard STSGs. Blocking mechanotransduction with a small-molecule focal adhesion kinase (FAK) inhibitor promoted healing, reduced contracture, mitigated scar formation, restored collagen architecture, and ultimately improved graft biomechanical properties. Acute mechanotransduction blockade up-regulated myeloid CXCL10-mediated anti-inflammation with decreased CXCL14-mediated myeloid and fibroblast recruitment. At later time points, mechanical signaling shifted fibroblasts toward profibrotic differentiation fates, and disruption of mechanotransduction modulated mesenchymal fibroblast differentiation states to block those responses, instead driving fibroblasts toward proregenerative, adipogenic states similar to unwounded skin. We then confirmed these two diverging fibroblast transcriptional trajectories in human skin, human scar, and a three-dimensional organotypic model of human skin. Together, pharmacological blockade of mechanotransduction markedly improved large animal healing after STSG by promoting both early, anti-inflammatory and late, regenerative transcriptional programs, resulting in healed tissue similar to unwounded skin. FAK inhibition could therefore supplement the current standard of care for traumatic and burn injuries.
PMID: 35584231
ISSN: 1946-6242
CID: 5678192

Focal adhesion-mediated cell anchoring and migration: from in vitro to in vivo

Yamaguchi, Naoya; Knaut, Holger
Cell-extracellular matrix interactions have been studied extensively using cells cultured in vitro. These studies indicate that focal adhesion (FA)-based cell-extracellular matrix interactions are essential for cell anchoring and cell migration. Whether FAs play a similarly important role in vivo is less clear. Here, we summarize the formation and function of FAs in cultured cells and review how FAs transmit and sense force in vitro. Using examples from animal studies, we also describe the role of FAs in cell anchoring during morphogenetic movements and cell migration in vivo. Finally, we conclude by discussing similarities and differences in how FAs function in vitro and in vivo.
PMCID:9188754
PMID: 35587444
ISSN: 1477-9129
CID: 5277482

Advancing therapeutic targeting of the vulnerable plaque [Comment]

Newman, Alexandra A C; Cyr, Yannick; Moore, Kathryn J
PMID: 35567566
ISSN: 1522-9645
CID: 5215162

Structural basis of ion - substrate coupling in the Na+-dependent dicarboxylate transporter VcINDY

Sauer, David B; Marden, Jennifer J; Sudar, Joseph C; Song, Jinmei; Mulligan, Christopher; Wang, Da-Neng
The Na+-dependent dicarboxylate transporter from Vibrio cholerae (VcINDY) is a prototype for the divalent anion sodium symporter (DASS) family. While the utilization of an electrochemical Na+ gradient to power substrate transport is well established for VcINDY, the structural basis of this coupling between sodium and substrate binding is not currently understood. Here, using a combination of cryo-EM structure determination, succinate binding and site-directed cysteine alkylation assays, we demonstrate that the VcINDY protein couples sodium- and substrate-binding via a previously unseen cooperative mechanism by conformational selection. In the absence of sodium, substrate binding is abolished, with the succinate binding regions exhibiting increased flexibility, including HPinb, TM10b and the substrate clamshell motifs. Upon sodium binding, these regions become structurally ordered and create a proper binding site for the substrate. Taken together, these results provide strong evidence that VcINDY's conformational selection mechanism is a result of the sodium-dependent formation of the substrate binding site.
PMCID:9098524
PMID: 35551191
ISSN: 2041-1723
CID: 5214742

Genetic Basis of Left Ventricular Noncompaction

Rojanasopondist, Pakdee; Nesheiwat, Leigh; Piombo, Sebastian; Porter, George A; Ren, Mindong; Phoon, Colin K L
BACKGROUND:Left ventricular noncompaction (LVNC) is the third most common pediatric cardiomyopathy characterized by a thinned myocardium and prominent trabeculations. Next-generation genetic testing has led to a rapid increase in the number of genes reported to be associated with LVNC, but we still have little understanding of its pathogenesis. We sought to grade the strength of the gene-disease relationship for all genes reported to be associated with LVNC and identify molecular pathways that could be implicated. METHODS:Following a systematic PubMed review, all genes identified with LVNC were graded using a validated, semi-quantitative system based on all published genetic and experimental evidence created by the Clinical Genome Resource (ClinGen). Genetic pathway analysis identified molecular processes and pathways associated with LVNC. RESULTS:We identified 189 genes associated with LVNC: 11 (6%) were classified as definitive, 21 (11%) were classified as moderate, and 140 (74%) were classified as limited, but 17 (9%) were classified as no evidence. Of the 32 genes classified as definitive or moderate, the most common gene functions were sarcomere function (n=11; 34%), transcriptional/translational regulator (n=6; 19%), mitochondrial function (n=3; 9%), and cytoskeletal protein (n=3; 9%). Furthermore, 18 (56%) genes were implicated in noncardiac syndromic presentations. Lastly, 3 genetic pathways (cardiomyocyte differentiation via BMP receptors, factors promoting cardiogenesis in vertebrates, and Notch signaling) were found to be unique to LVNC and not overlap with pathways identified in dilated cardiomyopathy and hypertrophic cardiomyopathy. CONCLUSIONS:LVNC is a genetically heterogeneous cardiomyopathy. Distinct from dilated or hypertrophic cardiomyopathies, LVNC appears to arise from abnormal developmental processes.
PMID: 35549379
ISSN: 2574-8300
CID: 5214612

Synaptotagmins 1 and 7 Play Complementary Roles in Somatodendritic Dopamine Release

Hikima, Takuya; Witkovsky, Paul; Khatri, Latika; Chao, Moses V; Rice, Margaret E
The molecular mechanisms underlying somatodendritic dopamine (DA) release remain unresolved, despite the passing of decades since its discovery. Our previous work showed robust release of somatodendritic DA in submillimolar extracellular Ca2+ concentration ([Ca2+]o). Here we tested the hypothesis that the high-affinity Ca2+ sensor synaptotagmin 7 (Syt7), is a key determinant of somatodendritic DA release and its Ca2+ dependence. Somatodendritic DA release from SNc DA neurons was assessed using whole-cell recording in midbrain slices from male and female mice to monitor evoked DA-dependent D2 receptor-mediated inhibitory currents (D2ICs). Single-cell application of an antibody to Syt7 (Syt7 Ab) decreased pulse train-evoked D2ICs, revealing a functional role for Syt7. The assessment of the Ca2+ dependence of pulse train-evoked D2ICs confirmed robust DA release in submillimolar [Ca2+]o in wild-type (WT) neurons, but loss of this sensitivity with intracellular Syt7 Ab or in Syt7 knock-out (KO) mice. In millimolar [Ca2+]o, pulse train-evoked D2ICs in Syt7 KOs showed a greater reduction in decreased [Ca2+]o than seen in WT mice; the effect on single pulse-evoked DA release, however, did not differ between genotypes. Single-cell application of a Syt1 Ab had no effect on train-evoked D2ICs in WT SNc DA neurons, but did cause a decrease in D2IC amplitude in Syt7 KOs, indicating a functional substitution of Syt1 for Syt7. In addition, Syt1 Ab decreased single pulse-evoked D2ICs in WT cells, indicating the involvement of Syt1 in tonic DA release. Thus, Syt7 and Syt1 play complementary roles in somatodendritic DA release from SNc DA neurons.SIGNIFICANCE STATEMENT The respective Ca2+ dependence of somatodendritic and axonal dopamine (DA) release differs, resulting in the persistence of somatodendritic DA release in submillimolar Ca2+ concentrations too low to support axonal release. We demonstrate that synaptotagmin7 (Syt7), a high-affinity Ca2+ sensor, underlies phasic somatodendritic DA release and its Ca2+ sensitivity in the substantia nigra pars compacta. In contrast, we found that synaptotagmin 1 (Syt1), the Ca2+ sensor underlying axonal DA release, plays a role in tonic, but not phasic, somatodendritic DA release in wild-type mice. However, Syt1 can facilitate phasic DA release after Syt7 deletion. Thus, we show that both Syt1 and Syt7 act as Ca2+ sensors subserving different aspects of somatodendritic DA release processes.
PMCID:9097777
PMID: 35361702
ISSN: 1529-2401
CID: 5220042

Exercise Causes Arrhythmogenic Remodeling of Intracellular Calcium Dynamics in Plakophilin-2-Deficient Hearts

van Opbergen, Chantal J M; Bagwan, Navratan; Maurya, Svetlana R; Kim, Joon-Chul; Smith, Abigail N; Blackwell, Daniel J; Johnston, Jeffrey N; Knollmann, Björn C; Cerrone, Marina; Lundby, Alicia; Delmar, Mario
BACKGROUND: METHODS:Experiments were performed in myocytes from a cardiomyocyte-specific, tamoxifen-activated, PKP2 knockout murine line (PKP2cKO). For training, mice underwent 75 minutes of treadmill running once per day, 5 days each week for 6 weeks. We used multiple approaches including imaging, high-resolution mass spectrometry, electrocardiography, and pharmacological challenges to study the functional properties of cells/hearts in vitro and in vivo. RESULTS: CONCLUSIONS:
PMCID:9086182
PMID: 35491884
ISSN: 1524-4539
CID: 5235702

World Trade Center dust induces nasal and neurological tissue injury while propagating reduced olfaction capabilities and increased anxiety behaviors

Hernandez, Michelle; Vaughan, Joshua; Gordon, Terry; Lippmann, Morton; Gandy, Sam; Chen, Lung-Chi
PMID: 35533138
ISSN: 1091-7691
CID: 5214132

Sidekick dynamically rebalances contractile and protrusive forces to control tissue morphogenesis

Malin, Jacob; Rosa Birriel, Christian; Astigarraga, Sergio; Treisman, Jessica E; Hatini, Victor
Contractile actomyosin and protrusive branched F-actin networks interact in a dynamic balance, repeatedly contracting and expanding apical cell contacts to organize the epithelium of the developing fly retina. Previously we showed that the immunoglobulin superfamily protein Sidekick (Sdk) contributes to contraction by recruiting the actin binding protein Polychaetoid (Pyd) to vertices. Here we show that as tension increases during contraction, Sdk progressively accumulates at vertices, where it toggles to recruit the WAVE regulatory complex (WRC) to promote actin branching and protrusion. Sdk alternately interacts with the WRC and Pyd using the same C-terminal motif. With increasing protrusion, levels of Sdk and the WRC decrease at vertices while levels of Pyd increase paving the way for another round of contraction. Thus, by virtue of dynamic association with vertices and interchangeable associations with contractile and protrusive effectors, Sdk is central to controlling the balance between contraction and expansion that shapes this epithelium.
PMCID:8908789
PMID: 35258563
ISSN: 1540-8140
CID: 5190362

Radon-222 Brain Dosimetry

Harley, Naomi H; Robbins, Edith S
ABSTRACT/UNASSIGNED:The human brain dose from radon-222 (222Rn) exposure is calculated here using 222Rn tissue solubility data. A fraction of 222Rn inhaled dissolves in blood and cellular fluids and circulates to brain and all organs. Radon-222 has a relatively high solubility in blood and body fluids based on human inhalation experiments. The brain dose uses calculated concentrations of 222Rn in blood and cellular fluids from exhaled breath measurements following human exposure in a 222Rn chamber. The annual brain dose from continuous inhalation of a concentration of 100 Bq m-3 is about 450 times less than the dose to bronchial epithelium from inhalation of the same 222Rn concentration. Based on the 222Rn dosimetry here, it is highly unlikely that brain cancer is related to even high 222Rn exposures. Any functional or neurodegenerative issues from exposure to very small doses of 222Rn alpha particles are, at present, unknown.
PMID: 35228505
ISSN: 1538-5159
CID: 5174242