Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13394


Exercise-induced expression of cardiac ATP-sensitive potassium channels promotes action potential shortening and energy conservation

Zingman, Leonid V; Zhu, Zhiyong; Sierra, Ana; Stepniak, Elizabeth; Burnett, Colin M-L; Maksymov, Gennadiy; Anderson, Mark E; Coetzee, William A; Hodgson-Zingman, Denice M
Physical activity is one of the most important determinants of cardiac function. The ability of the heart to increase delivery of oxygen and metabolic fuels relies on an array of adaptive responses necessary to match bodily demand while avoiding exhaustion of cardiac resources. The ATP-sensitive potassium (K(ATP)) channel has the unique ability to adjust cardiac membrane excitability in accordance with ATP and ADP levels, and up-regulation of its expression that occurs in response to exercise could represent a critical element of this adaption. However, the mechanism by which K(ATP) channel expression changes result in a beneficial effect on cardiac excitability and function remains to be established. Here, we demonstrate that an exercise-induced rise in K(ATP) channel expression enhanced the rate and magnitude of action potential shortening in response to heart rate acceleration. This adaptation in membrane excitability promoted significant reduction in cardiac energy consumption under escalating workloads. Genetic disruption of normal K(ATP) channel pore function abolished the exercise-related changes in action potential duration adjustment and caused increased cardiac energy consumption. Thus, an expression-driven enhancement in the K(ATP) channel-dependent membrane response to alterations in cardiac workload represents a previously unrecognized mechanism for adaptation to physical activity and a potential target for cardioprotection
PMCID:3103621
PMID: 21439969
ISSN: 1095-8584
CID: 136465

Cardiac ATP-sensitive K+ channel associates with the glycolytic enzyme complex

Hong, Miyoun; Kefaloyianni, Eirini; Bao, Li; Malester, Brian; Delaroche, Diane; Neubert, Thomas A; Coetzee, William A
Being gated by high-energy nucleotides, cardiac ATP-sensitive potassium (K(ATP)) channels are exquisitely sensitive to changes in cellular energy metabolism. An emerging view is that proteins associated with the K(ATP) channel provide an additional layer of regulation. Using putative sulfonylurea receptor (SUR) coiled-coil domains as baits in a 2-hybrid screen against a rat cardiac cDNA library, we identified glycolytic enzymes (GAPDH and aldolase A) as putative interacting proteins. Interaction between aldolase and SUR was confirmed using GST pulldown assays and coimmunoprecipitation assays. Mass spectrometry of proteins from K(ATP) channel immunoprecipitates of rat cardiac membranes identified glycolysis as the most enriched biological process. Coimmunoprecipitation assays confirmed interaction for several glycolytic enzymes throughout the glycolytic pathway. Immunocytochemistry colocalized many of these enzymes with K(ATP) channel subunits in rat cardiac myocytes. The catalytic activities of aldolase and pyruvate kinase functionally modulate K(ATP) channels in patch-clamp experiments, whereas d-glucose was without effect. Overall, our data demonstrate close physical association and functional interaction of the glycolytic process (particularly the distal ATP-generating steps) with cardiac K(ATP) channels.-Hong, M., Kefaloyianni, E., Bao, L., Malester, B., Delaroche, D., Neubert, T. A., Coetzee, W. A. Cardiac ATP-sensitive K(+) channel associates with the glycolytic enzyme complex
PMCID:3114533
PMID: 21482559
ISSN: 1530-6860
CID: 134908

LiGluR restores visual responses in rodent models of inherited blindness

Caporale, Natalia; Kolstad, Kathleen D; Lee, Trevor; Tochitsky, Ivan; Dalkara, Deniz; Trauner, Dirk; Kramer, Richard; Dan, Yang; Isacoff, Ehud Y; Flannery, John G
Inherited retinal degeneration results from many different mutations in either photoreceptor-specific or nonphotoreceptor-specific genes. However, nearly all mutations lead to a common blinding phenotype that initiates with rod cell death, followed by loss of cones. In most retinal degenerations, other retinal neuron cell types survive for long periods after blindness from photoreceptor loss. One strategy to restore light responsiveness to a retina rendered blind by photoreceptor degeneration is to express light-regulated ion channels or transporters in surviving retinal neurons. Recent experiments in rodents have restored light-sensitivity by expressing melanopsin or microbial opsins either broadly throughout the retina or selectively in the inner segments of surviving cones or in bipolar cells. Here, we present an approach whereby a genetically and chemically engineered light-gated ionotropic glutamate receptor (LiGluR) is expressed selectively in retinal ganglion cells (RGCs), the longest-surviving cells in retinal blinding diseases. When expressed in the RGCs of a well-established model of retinal degeneration, the rd1 mouse, LiGluR restores light sensitivity to the RGCs, reinstates light responsiveness to the primary visual cortex, and restores both the pupillary reflex and a natural light-avoidance behavior.
PMCID:3129552
PMID: 21610698
ISSN: 1525-0024
CID: 2485062

Optogenetic photochemical control of designer K+ channels in mammalian neurons

Fortin, Doris L; Dunn, Timothy W; Fedorchak, Alexis; Allen, Duane; Montpetit, Rachel; Banghart, Matthew R; Trauner, Dirk; Adelman, John P; Kramer, Richard H
Currently available optogenetic tools, including microbial light-activated ion channels and transporters, are transforming systems neuroscience by enabling precise remote control of neuronal firing, but they tell us little about the role of indigenous ion channels in controlling neuronal function. Here, we employ a chemical-genetic strategy to engineer light sensitivity into several mammalian K(+) channels that have different gating and modulation properties. These channels provide the means for photoregulating diverse electrophysiological functions. Photosensitivity is conferred on a channel by a tethered ligand photoswitch that contains a cysteine-reactive maleimide (M), a photoisomerizable azobenzene (A), and a quaternary ammonium (Q), a K(+) channel pore blocker. Using mutagenesis, we identify the optimal extracellular cysteine attachment site where MAQ conjugation results in pore blockade when the azobenzene moiety is in the trans but not cis configuration. With this strategy, we have conferred photosensitivity on channels containing Kv1.3 subunits (which control axonal action potential repolarization), Kv3.1 subunits (which contribute to rapid-firing properties of brain neurons), Kv7.2 subunits (which underlie "M-current"), and SK2 subunits (which are Ca(2+)-activated K(+) channels that contribute to synaptic responses). These light-regulated channels may be overexpressed in genetically targeted neurons or substituted for native channels with gene knockin technology to enable precise optopharmacological manipulation of channel function.
PMCID:3129715
PMID: 21525363
ISSN: 1522-1598
CID: 2485072

The role of the central noradrenergic system in behavioral inhibition

Stone, Eric A; Lin, Yan; Sarfraz, Yasmeen; Quartermain, David
Although the central noradrenergic system has been shown to be involved in a number of behavioral and neurophysiological processes, the relation of these to its role in depressive illness has been difficult to define. The present review discusses the hypothesis that one of its chief functions that may be related to affective illness is the inhibition of behavioral activation, a prominent symptom of the disorder. This hypothesis is found to be consistent with most previous neuropsychopharmacological and immunohistochemical experiments on active behavior in rodents in a variety of experimental conditions using manipulation of neurotransmission at both locus coeruleus and forebrain adrenergic receptors. The findings support a mechanism in which high rates of noradrenergic neural activity suppress the neural activity of principal neurons in forebrain regions mediating active behavior. The suppression may be mediated through postsynaptic galaninergic and adrenergic receptors, and via the release of corticotrophin-releasing hormone. The hypothesis is consistent with clinical evidence for central noradrenergic system hyperactivity in depressives and with the view that this hyperactivity is a contributing etiological factor in the disorder. A similar mechanism may underlie the ability of the noradrenergic system to suppress seizure activity suggesting that inhibition of the spread of neural activation may be a unifying function
PMCID:3101301
PMID: 21315760
ISSN: 1872-6321
CID: 134305

State-dependent functional connectivity of rat olfactory system assessed by fMRI

Wilson, D A; Hoptman, M J; Gerum, S V; Guilfoyle, D N
Functional connectivity between the piriform cortex and limbic and neocortical areas was assessed using functional magnetic resonance imaging (fMRI) of urethane anesthetized rats that spontaneously cycled between slow-wave and fast-wave states. Slow-wave and fast-wave states were determined indirectly through monitoring of respiration rate, which was confirmed to co-vary with state as determined by electrophysiological recordings. Previous electrophysiological data have suggested that the piriform cortex shifts between responsiveness to afferent odor input during fast-wave states and enhanced functional connectivity with limbic areas during slow-wave state. The present results demonstrate that fMRI-based resting state functional connectivity between the piriform cortex and both limbic and neocortical areas is enhanced during slow-wave state compared to fast-wave state using respiration as an indirect measure of state in urethane anesthetized rats. This state-dependent shift in functional connectivity may be important for sleep-dependent odor memory consolidation
PMCID:3103633
PMID: 21530613
ISSN: 1872-7972
CID: 133463

Prefrontal and monoaminergic contributions to stop-signal task performance in rats

Bari, Andrea; Mar, Adam C; Theobald, David E; Elands, Sophie A; Oganya, Kelechi C N A; Eagle, Dawn M; Robbins, Trevor W
Defining the neural and neurochemical substrates of response inhibition is of crucial importance for the study and treatment of pathologies characterized by impulsivity such as attention-deficit/hyperactivity disorder and addiction. The stop-signal task (SST) is one of the most popular paradigms used to study the speed and efficacy of inhibitory processes in humans and other animals. Here we investigated the effect of temporarily inactivating different prefrontal subregions in the rat by means of muscimol microinfusions on SST performance. We found that dorsomedial prefrontal cortical areas are important for inhibiting an already initiated response. We also investigated the possible neural substrates of the selective noradrenaline reuptake inhibitor atomoxetine via its local microinfusion into different subregions of the rat prefrontal cortex. Our results show that both orbitofrontal and dorsal prelimbic cortices mediate the beneficial effects of atomoxetine on SST performance. To assess the neurochemical specificity of these effects, we infused the alpha2-adrenergic agonist guanfacine and the D(1)/D(2) antagonist alpha-flupenthixol in dorsal prelimbic cortex to interfere with noradrenergic and dopaminergic neurotransmission, respectively. Guanfacine, which modulates noradrenergic neurotransmission, selectively impaired stopping, whereas blocking dopaminergic receptors by alpha-flupenthixol infusion prolonged go reaction time only, confirming the important role of noradrenergic neurotransmission in response inhibition. These results show that, similar to humans, distinct networks play important roles during SST performance in the rat and that they are differentially modulated by noradrenergic and dopaminergic neurotransmission. This study advances our understanding of the neuroanatomical and neurochemical determinants of impulsivity, which are relevant for a range of psychiatric disorders.
PMCID:3145112
PMID: 21697375
ISSN: 0270-6474
CID: 1035642

Temporal-spatial changes in Sonic Hedgehog expression and signaling reveal different potentials of ventral mesencephalic progenitors to populate distinct ventral midbrain nuclei

Blaess, Sandra; Bodea, Gabriela O; Kabanova, Anna; Chanet, Soline; Mugniery, Emilie; Derouiche, Amin; Stephen, Daniel; Joyner, Alexandra L
BACKGROUND: The ventral midbrain contains a diverse array of neurons, including dopaminergic neurons of the ventral tegmental area (VTA) and substantia nigra (SN) and neurons of the red nucleus (RN). Dopaminergic and RN neurons have been shown to arise from ventral mesencephalic precursors that express Sonic Hedgehog (Shh). However, Shh expression, which is initially confined to the mesencephalic ventral midline, expands laterally and is then downregulated in the ventral midline. In contrast, expression of the Hedgehog target gene Gli1 initiates in the ventral midline prior to Shh expression, but after the onset of Shh expression it is expressed in precursors lateral to Shh-positive cells. Given these dynamic gene expression patterns, Shh and Gli1 expression could delineate different progenitor populations at distinct embryonic time points. RESULTS: We employed genetic inducible fate mapping (GIFM) to investigate whether precursors that express Shh (Shh-GIFM) or transduce Shh signaling (Gli1-GIFM) at different time points give rise to different ventral midbrain cell types. We find that precursors restricted to the ventral midline are labeled at embryonic day (E)7.5 with Gli1-GIFM, and with Shh-GIFM at E8.5. These precursors give rise to all subtypes of midbrain dopaminergic neurons and the anterior RN. A broader domain of progenitors that includes the ventral midline is marked with Gli1-GIFM at E8.5 and with Shh-GIFM at E9.5; these fate-mapped cells also contribute to all midbrain dopaminergic subtypes and to the entire RN. In contrast, a lateral progenitor domain that is labeled with Gli1-GIFM at E9.5 and with Shh-GIFM at E11.5 has a markedly reduced potential to give rise to the RN and to SN dopaminergic neurons, and preferentially gives rise to the ventral-medial VTA. In addition, cells derived from Shh- and Gli1-expressing progenitors located outside of the ventral midline give rise to astrocytes. CONCLUSIONS: We define a ventral midbrain precursor map based on the timing of Gli1 and Shh expression, and suggest that the diversity of midbrain dopaminergic neurons is at least partially determined during their precursor stage when their medial-lateral position, differential gene expression and the time when they leave the ventricular zone influence their fate decisions
PMCID:3135491
PMID: 21689430
ISSN: 1749-8104
CID: 141264

An efficient synthesis of loline alkaloids

Cakmak, Mesut; Mayer, Peter; Trauner, Dirk
Loline (1) is a small alkaloid that, in spite of its simple-looking structure, has posed surprising challenges to synthetic chemists. It has been known for more than a century and has been the subject of extensive biological investigations, but only two total syntheses have been achieved to date. Here, we report an asymmetric total synthesis of loline that, with less then ten steps, is remarkably short. Our synthesis incorporates a Sharpless epoxidation, a Grubbs olefin metathesis and an unprecedented transannular aminobromination, which converts an eight-membered cyclic carbamate into a bromopyrrolizidine. The synthesis is marked by a high degree of chemo- and stereoselectivity and gives access to several members of the loline alkaloid family. It delivers sufficient material to support a programme aimed at studying the complex interactions between plants, fungi, insects and bacteria brokered by loline alkaloids.
PMID: 21697875
ISSN: 1755-4349
CID: 2485082

Interaction between delta opioid receptors and benzodiazepines in CO2-induced respiratory responses in mice

Borkowski, Anne H; Barnes, Dylan C; Blanchette, Derek R; Castellanos, F Xavier; Klein, Donald F; Wilson, Donald A
The false-suffocation hypothesis of panic disorder (Klein, 1993) suggested delta-opioid receptors as a possible source of the respiratory dysfunction manifested in panic attacks occurring in panic disorder (Preter and Klein, 2008). This study sought to determine if a lack of delta-opioid receptors in a mouse model affects respiratory response to elevated CO(2), and whether the response is modulated by benzodiazepines, which are widely used to treat panic disorder. In a whole-body plethysmograph, respiratory responses to 5% CO(2) were compared between delta-opioid receptor knockout mice and wild-type mice after saline, diazepam (1mg/kg), and alprazolam (0.3mg/kg) injections. The results show that lack of delta-opioid receptors does not affect normal response to elevated CO(2), but does prevent benzodiazepines from modulating that response. Thus, in the presence of benzodiazepine agonists, respiratory responses to elevated CO(2) were enhanced in delta-opioid receptor knockout mice compared to wild-type mice. This suggests an interplay between benzodiazepine receptors and delta-opioid receptors in regulating the respiratory effects of elevated CO(2), which might be related to CO(2) induced panic
PMCID:3104108
PMID: 21561601
ISSN: 1872-6240
CID: 138822