Searched for: school:SOM
Department/Unit:Neuroscience Institute
Direct haplotype-resolved 5-base HiFi sequencing for genome-wide profiling of hypermethylation outliers in a rare disease cohort
Cheung, Warren A; Johnson, Adam F; Rowell, William J; Farrow, Emily; Hall, Richard; Cohen, Ana S A; Means, John C; Zion, Tricia N; Portik, Daniel M; Saunders, Christopher T; Koseva, Boryana; Bi, Chengpeng; Truong, Tina K; Schwendinger-Schreck, Carl; Yoo, Byunggil; Johnston, Jeffrey J; Gibson, Margaret; Evrony, Gilad; Rizzo, William B; Thiffault, Isabelle; Younger, Scott T; Curran, Tom; Wenger, Aaron M; Grundberg, Elin; Pastinen, Tomi
Long-read HiFi genome sequencing allows for accurate detection and direct phasing of single nucleotide variants, indels, and structural variants. Recent algorithmic development enables simultaneous detection of CpG methylation for analysis of regulatory element activity directly in HiFi reads. We present a comprehensive haplotype resolved 5-base HiFi genome sequencing dataset from a rare disease cohort of 276 samples in 152 families to identify rare (~0.5%) hypermethylation events. We find that 80% of these events are allele-specific and predicted to cause loss of regulatory element activity. We demonstrate heritability of extreme hypermethylation including rare cis variants associated with short (~200 bp) and large hypermethylation events (>1 kb), respectively. We identify repeat expansions in proximal promoters predicting allelic gene silencing via hypermethylation and demonstrate allelic transcriptional events downstream. On average 30-40 rare hypermethylation tiles overlap rare disease genes per patient, providing indications for variation prioritization including a previously undiagnosed pathogenic allele in DIP2B causing global developmental delay. We propose that use of HiFi genome sequencing in unsolved rare disease cases will allow detection of unconventional diseases alleles due to loss of regulatory element activity.
PMCID:10226990
PMID: 37248219
ISSN: 2041-1723
CID: 5541202
Deep learning generates synthetic cancer histology for explainability and education
Dolezal, James M; Wolk, Rachelle; Hieromnimon, Hanna M; Howard, Frederick M; Srisuwananukorn, Andrew; Karpeyev, Dmitry; Ramesh, Siddhi; Kochanny, Sara; Kwon, Jung Woo; Agni, Meghana; Simon, Richard C; Desai, Chandni; Kherallah, Raghad; Nguyen, Tung D; Schulte, Jefree J; Cole, Kimberly; Khramtsova, Galina; Garassino, Marina Chiara; Husain, Aliya N; Li, Huihua; Grossman, Robert; Cipriani, Nicole A; Pearson, Alexander T
Artificial intelligence methods including deep neural networks (DNN) can provide rapid molecular classification of tumors from routine histology with accuracy that matches or exceeds human pathologists. Discerning how neural networks make their predictions remains a significant challenge, but explainability tools help provide insights into what models have learned when corresponding histologic features are poorly defined. Here, we present a method for improving explainability of DNN models using synthetic histology generated by a conditional generative adversarial network (cGAN). We show that cGANs generate high-quality synthetic histology images that can be leveraged for explaining DNN models trained to classify molecularly-subtyped tumors, exposing histologic features associated with molecular state. Fine-tuning synthetic histology through class and layer blending illustrates nuanced morphologic differences between tumor subtypes. Finally, we demonstrate the use of synthetic histology for augmenting pathologist-in-training education, showing that these intuitive visualizations can reinforce and improve understanding of histologic manifestations of tumor biology.
PMCID:10227067
PMID: 37248379
ISSN: 2397-768x
CID: 5865472
Computational models for state-dependent traveling waves in hippocampal formation
Wu, Yuxuan; Chen, Zhe Sage
Hippocampal theta (4-10 Hz) oscillations have been identified as traveling waves in both rodents and humans. In freely foraging rodents, the theta traveling wave is a planar wave propagating from the dorsal to ventral hippocampus along the septotemporal axis. Motivated from experimental findings, we develop a spiking neural network of excitatory and inhibitory neurons to generate state-dependent hippocampal traveling waves to improve current mechanistic understanding of propagating waves. Model simulations demonstrate the necessary conditions for generating wave propagation and characterize the traveling wave properties with respect to model parameters, running speed and brain state of the animal. Networks with long-range inhibitory connections are more suitable than networks with long-range excitatory connections. We further generalize the spiking neural network to model traveling waves in the medial entorhinal cortex (MEC) and predict that traveling theta waves in the hippocampus and entorhinal cortex are in sink.
PMCID:10245836
PMID: 37292865
ISSN: 2692-8205
CID: 5953392
Spatiotemporal neural dynamics of object recognition under uncertainty in humans
Wu, Yuan-Hao; Podvalny, Ella; He, Biyu J
While there is a wealth of knowledge about core object recognition-our ability to recognize clear, high-contrast object images-how the brain accomplishes object recognition tasks under increased uncertainty remains poorly understood. We investigated the spatiotemporal neural dynamics underlying object recognition under increased uncertainty by combining MEG and 7 Tesla (7T) fMRI in humans during a threshold-level object recognition task. We observed an early, parallel rise of recognition-related signals across ventral visual and frontoparietal regions that preceded the emergence of category-related information. Recognition-related signals in ventral visual regions were best explained by a two-state representational format whereby brain activity bifurcated for recognized and unrecognized images. By contrast, recognition-related signals in frontoparietal regions exhibited a reduced representational space for recognized images, yet with sharper category information. These results provide a spatiotemporally resolved view of neural activity supporting object recognition under uncertainty, revealing a pattern distinct from that underlying core object recognition.
PMID: 37184213
ISSN: 2050-084x
CID: 5541732
Single-domain antibody-based noninvasive in vivo imaging of α-synuclein or tau pathology
Jiang, Yixiang; Lin, Yan; Krishnaswamy, Senthilkumar; Pan, Ruimin; Wu, Qian; Sandusky-Beltran, Leslie A; Liu, Mengyu; Kuo, Min-Hao; Kong, Xiang-Peng; Congdon, Erin E; Sigurdsson, Einar M
Intracellular deposition of α-synuclein and tau are hallmarks of synucleinopathies and tauopathies, respectively. Recently, several dye-based imaging probes with selectivity for tau aggregates have been developed, but suitable imaging biomarkers for synucleinopathies are still unavailable. Detection of both of these aggregates early in the disease process may allow for prophylactic therapies before functional impairments have manifested, highlighting the importance of developing specific imaging probes for these lesions. In contrast to the β sheet dyes, single-domain antibodies, found in camelids and a few other species, are highly specific, and their small size allows better brain entry and distribution than whole antibodies. Here, we have developed such imaging ligands via phage display libraries derived from llamas immunized with α-synuclein and tau preparations, respectively. These probes allow noninvasive and specific in vivo imaging of α-synuclein versus tau pathology in mice, with the brain signal correlating strongly with lesion burden. These small antibody derivatives have great potential for in vivo diagnosis of these diseases.
PMCID:10171817
PMID: 37163602
ISSN: 2375-2548
CID: 5476842
A systematic review of digital interventions for smoking cessation in patients with serious mental illness
Martinez Agulleiro, Luis; Patil, Bhagyashree; Firth, Joseph; Sawyer, Chelsea; Amann, Benedikt L; Fonseca, Francina; Torrens, Marta; Perez, Victor; Castellanos, Francisco Xavier; Kane, John M; Guinart, Daniel
Tobacco smoking is highly prevalent among patients with serious mental illness (SMI), with known deleterious consequences. Smoking cessation is therefore a prioritary public health challenge in SMI. In recent years, several smoking cessation digital interventions have been developed for non-clinical populations. However, their impact in patients with SMI remains uncertain. We conducted a systematic review to describe and evaluate effectiveness, acceptability, adherence, usability and safety of digital interventions for smoking cessation in patients with SMI. PubMed/MEDLINE, EMBASE, CINAHL, Web of Science, PsychINFO and the Cochrane Tobacco Addiction Group Specialized Register were searched. Studies matching inclusion criteria were included and their information systematically extracted by independent investigators. Thirteen articles were included, which reported data on nine different digital interventions. Intervention theoretical approaches ranged from mobile contingency management to mindfulness. Outcome measures varied widely between studies. The highest abstinence rates were found for mSMART MIND (7-day point-prevalent abstinence: 16-40%). Let's Talk About Quitting Smoking reported greater acceptability ratings, although this was not evaluated with standardized measures. Regarding usability, Learn to Quit showed the highest System Usability Scale scores [mean (s.d.) 85.2 (15.5)]. Adverse events were rare and not systematically reported. Overall, the quality of the studies was fair to good. Digitally delivered health interventions for smoking cessation show promise for improving outcomes for patients with SMI, but lack of availability remains a concern. Larger trials with harmonized assessment measures are needed to generate more definitive evidence and specific recommendations.
PMID: 37161690
ISSN: 1469-8978
CID: 5544552
Microisolation of Spatially Characterized Single Populations of Neurons for RNA Sequencing from Mouse and Postmortem Human Brain Tissues
Alldred, Melissa J; Ginsberg, Stephen D
Single-cell and single-population RNA sequencing (RNA-seq) is a rapidly evolving new field of intense investigation. Recent studies indicate unique transcriptomic profiles are derived based on the spatial localization of neurons within circuits and regions. Individual neuronal subtypes can have vastly different transcriptomic fingerprints, well beyond the basic excitatory neuron and inhibitory neuron designations. To study single-population gene expression profiles of spatially characterized neurons, we have developed a methodology combining laser capture microdissection (LCM), RNA purification of single populations of neurons, and subsequent library preparation for downstream applications, including RNA-seq. LCM provides the benefit of isolating single neurons characterized by morphology or via transmitter-identified and/or receptor immunoreactivity and enables spatial localization within the sample. We utilize unfixed human postmortem and mouse brain tissue that is frozen to preserve RNA quality in order to isolate the desired neurons of interest. Microisolated neurons are then pooled for RNA purification utilizing as few as 250 individual neurons from a tissue section, precluding extraneous nonspecific tissue contaminants. Library preparation is performed from picogram RNA quantities extracted from LCM-captured neurons. Single-population RNA-seq analysis demonstrates that microisolated neurons from both postmortem human and mouse brain tissues are viable for transcriptomic profiling, including differential gene expression assessment and bioinformatic pathway inquiry.
PMCID:10179294
PMID: 37176744
ISSN: 2077-0383
CID: 5544672
Mechanisms of Dominant Electrophysiological Features of Four Subtypes of Layer 1 Interneurons
Meng, John Hongyu; Schuman, Benjamin; Rudy, Bernardo; Wang, Xiao-Jing
Neocortical layer 1 (L1) consists of the distal dendrites of pyramidal cells and GABAergic interneurons (INs) and receives extensive long-range "top-down" projections, but L1 INs remain poorly understood. In this work, we systematically examined the distinct dominant electrophysiological features for four unique IN subtypes in L1 that were previously identified from mice of either gender: Canopy cells show an irregular firing pattern near rheobase; neurogliaform cells are late-spiking, and their firing rate accelerates during current injections; cells with strong expression of the α7 nicotinic receptor (α7 cells), display onset (rebound) bursting; vasoactive intestinal peptide (VIP) expressing cells exhibit high input resistance, strong adaptation, and irregular firing. Computational modeling revealed that these diverse neurophysiological features could be explained by an extended exponential-integrate-and-fire neuron model with varying contributions of a slowly inactivating K+ channel, a T-type Ca2+ channel, and a spike-triggered Ca2+-dependent K+ channel. In particular, we show that irregular firing results from square-wave bursting through a fast-slow analysis. Furthermore, we demonstrate that irregular firing is frequently observed in VIP cells because of the interaction between strong adaptation and a slowly inactivating K+ channel. At last, we reveal that the VIP and α7 cell models resonant with alpha/theta band input through a dynamic gain analysis.SIGNIFICANCE STATEMENT In the neocortex, ∼25% of neurons are interneurons. Interestingly, only somas of interneurons reside within layer 1 (L1) of the neocortex, but not of excitatory pyramidal cells. L1 interneurons are diverse and believed to be important in the cortical-cortex interactions, especially top-down signaling in the cortical hierarchy. However, the electrophysiological features of L1 interneurons are poorly understood. Here, we systematically studied the electrophysiological features within each L1 interneuron subtype. Furthermore, we build computational models for each subtype and study the mechanisms behind these features. These electrophysiological features within each subtype should be incorporated to elucidate how different L1 interneuron subtypes contribute to communication between cortexes.
PMCID:10168018
PMID: 36931710
ISSN: 1529-2401
CID: 5502432
Genome-wide CRISPR/Cas9 screens reveal shared and cell-specific mechanisms of resistance to SHP2 inhibition
Wei, Wei; Geer, Mitchell J; Guo, Xinyi; Dolgalev, Igor; Sanjana, Neville E; Neel, Benjamin G
SHP2 (PTPN11) acts upstream of SOS1/2 to enable RAS activation. Allosteric SHP2 inhibitors (SHP2i) in the clinic prevent SHP2 activation, block proliferation of RTK- or cycling RAS mutant-driven cancers, and overcome "adaptive resistance." To identify SHP2i resistance mechanisms, we performed genome-wide CRISPR/Cas9 knockout screens on two SHP2i-sensitive cell lines, recovering genes expected to cause resistance (NF1, PTEN, CDKN1B, LZTR1, and RASA2) and novel targets (INPPL1, MAP4K5, epigenetic modifiers). We screened 14 additional lines with a focused CRISPR library targeting common "hits" from the genome-wide screens. LZTR1 deletion conferred resistance in 12/14 lines, followed by MAP4K5 (8/14), SPRED2/STK40 (6/14), and INPPL1 (5/14). INPPL1, MAP4K5, or LZTR1 deletion reactivated ERK signaling. INPPL1-mediated sensitization to SHP2i required its NPXY motif but not lipid phosphatase activity. MAP4K5 acted upstream of MEK through a kinase-dependent target(s); LZTR1 had cell-dependent effects on RIT and RAS stability. INPPL1, MAP4K5, or LZTR1 deletion also conferred SHP2i resistance in vivo. Defining the SHP2i resistance landscape could suggest effective combination approaches.
PMID: 36820830
ISSN: 1540-9538
CID: 5434002
The cardioprotective role of sirtuins is mediated in part by regulating KATP channel surface expression
Tuncay, Erkan; Gando, Ivan; Huo, Jian-Yi; Yepuri, Gautham; Sampler, Natalie; Turan, Belma; Yang, Hua-Qian; Ramasamy, Ravichandran; Coetzee, William A
Sirtuins are NAD+-dependent deacetylases with beneficial roles in conditions relevant to human health, including metabolic disease, type II diabetes, obesity, cancer, aging, neurodegenerative diseases, and cardiac ischemia. Since ATP-sensitive K+ (KATP) channels have cardioprotective roles, we investigated whether they are regulated by sirtuins. Nicotinamide mononucleotide (NMN) was used to increase cytosolic NAD+ levels and to activate sirtuins in cell lines, isolated rat and mouse cardiomyocytes or insulin-secreting INS-1 cells. KATP channels were studied with patch clamping, biochemistry techniques, and antibody uptake experiments. NMN led to an increase in intracellular NAD+ levels and an increase in the KATP channel current, without significant changes in the unitary current amplitude or open probability. An increased surface expression was confirmed using surface biotinylation approaches. The rate of KATP channel internalization was diminished by NMN, which may be a partial explanation for the increased surface expression. We show that NMN acts via sirtuins since the increased KATP channel surface expression was prevented by blockers of SIRT1 and SIRT2 (Ex527 and AGK2) and mimicked by SIRT1 activation (SRT1720). The pathophysiological relevance of this finding was studied using a cardioprotection assay with isolated ventricular myocytes, in which NMN protected against simulated ischemia or hypoxia in a KATP channel-dependent manner. Overall, our data draw a link between intracellular NAD+, sirtuin activation, KATP channel surface expression, and cardiac protection against ischemic damage.
PMCID:10110703
PMID: 36878847
ISSN: 1522-1563
CID: 5462392