Searched for: school:SOM
Department/Unit:Cell Biology
Focus on obesity [Editorial]
Fisher, Edward A
PMID: 20089947
ISSN: 1524-4636
CID: 134964
Treatment of collagen-induced arthritis by Natura-alpha via regulation of Th-1/Th-17 responses
Glatigny, Simon; Blaton, Marie-Agnes; Mencher, Simon K; Mistou, Sylvie; Lucas, Bruno; Fournier, Catherine; Wang, Long G; Chiocchia, Gilles
Cytokines and CD4(+) Th cells play a crucial role in the pathogenesis of rheumatoid arthritis. Among the Th populations, Th-1 and Th-17 have been described as pathogenic in collagen-induced arthritis (CIA) whereas Th-2 and Treg were found to have protective effects. The objective of this study was to examine the affect of Natura-alpha, a newly developed cytokine regulator, on CIA and on Th cell development. Natura-alpha treatment was administered before or during arthritis induction. Anti-type II collagen antibodies and cytokine expression were evaluated by ELISA. Emergence of CD4(+)CD25(+)Foxp3(+) T cells was assessed by flow cytometry. Th-17 differentiation of naive CD4 T cells was assessed in cultures with anti-CD3 and anti-CD28. We showed that Natura-alpha both prevented and treated CIA. We further demonstrated that in vivo treatment with Natura-alpha inhibited IL-17 production and anti-type II collagen IgG development. We showed in vitro, using an APC-free system, that Natura-alpha acted directly on differentiating T cells and inhibiting the formation of Th-1 and Th-17 cells but did not affect Th-2 cells. Since Natura-alpha inhibits a large spectrum of important pathogenic factors in CIA, it may provide a new and powerful approach to the treatment of rheumatoid arthritis and other inflammatory diseases
PMID: 20077403
ISSN: 1521-4141
CID: 109026
Disulfiram induces copper-dependent stimulation of reactive oxygen species and activation of the extrinsic apoptotic pathway in melanoma
Morrison, Brian W; Doudican, Nicole A; Patel, Kirtesh R; Orlow, Seth J
Melanoma is the most aggressive and deadly form of skin cancer. The current standard of care produces response rates of less than 20%, underscoring the critical need for identification of new effective, nontoxic therapies. Disulfiram (DSF) was identified using a drug screen as one of the several compounds that preferentially decreased proliferation in multiple melanoma subtypes compared with benign melanocytes. DSF, a member of the dithiocarbamate family, is a copper (Cu) chelator, and Cu has been shown previously to enhance DSF-mediated growth inhibition and apoptosis in cancer cells. Here, we report that in the presence of free Cu, DSF inhibits cellular proliferation and induces apoptosis in a panel of cell lines representing primary and metastatic nodular and superficial spreading melanoma. Both decreased cellular proliferation and increased apoptosis were seen at 50-500 nmol/l DSF concentrations that are achievable through oral dosing of the medication. In the presence of Cu, DSF caused activation of the extrinsic pathway of apoptosis as measured by caspase-8 cleavage. The addition of Z-IETD-FMK, a selective caspase-8 inhibitor, was protective against DSF-Cu-induced apoptosis. Production of reactive oxygen species (ROS) in response to DSF-Cu treatment preceded the induction of apoptosis. Both ROS production and apoptosis were prevented by coincubation of N-acetyl cysteine, a free radical scavenger. Our study shows that DSF might be used to target both nodular and superficial spreading melanoma through ROS production and activation of the extrinsic pathway of apoptosis
PMID: 19966593
ISSN: 1473-5636
CID: 106093
Insulin signaling promotes germline proliferation in C. elegans
Michaelson, David; Korta, Dorota Z; Capua, Yossi; Hubbard, E Jane Albert
Cell proliferation must be coordinated with cell fate specification during development, yet interactions among pathways that control these two critical aspects of development are not well understood. The coordination of cell fate specification and proliferation is particularly crucial during early germline development, when it impacts the establishment of stem/progenitor cell populations and ultimately the production of gametes. In C. elegans, insulin/IGF-like receptor (IIR) signaling has been implicated in fertility, but the basis for the fertility defect had not been previously characterized. We found that IIR signaling is required for robust larval germline proliferation, separate from its well-characterized role in preventing dauer entry. IIR signaling stimulates the larval germline cell cycle. This activity is distinct from Notch signaling, occurs in a predominantly germline-autonomous manner, and responds to somatic activity of ins-3 and ins-33, genes that encode putative insulin-like ligands. IIR signaling in this role acts through the canonical PI3K pathway, inhibiting DAF-16/FOXO. However, signaling from these ligands does not inhibit daf-16 in neurons nor in the intestine, two tissues previously implicated in other IIR roles. Our data are consistent with a model in which: (1) under replete reproductive conditions, the larval germline responds to insulin signaling to ensure robust germline proliferation that builds up the germline stem cell population; and (2) distinct insulin-like ligands contribute to different phenotypes by acting on IIR signaling in different tissues
PMCID:2827619
PMID: 20110332
ISSN: 0950-1991
CID: 106506
Enhancement of arsenic trioxide cytotoxicity by dietary isothiocyanates in human leukemic cells via a reactive oxygen species-dependent mechanism
Doudican, Nicole A; Bowling, Benjamin; Orlow, Seth J
Although clearly effective in acute promyelocytic leukemia (APL), arsenic trioxide (ATO) demonstrates little clinical benefit as a single agent in the treatment of non-APL hematological malignancies. We screened a library of 2000 marketed drugs and naturally occurring compounds to identify agents that potentiate the cytotoxic effects of ATO in leukemic cells. Here, we report the identification of three isothiocyanates (sulforaphane, erysolin and erucin) found in cruciferous vegetables as enhancers of ATO cytotoxicity. Both erysolin and sulforaphane significantly enhanced ATO-mediated cytotoxicity and apoptosis in a panel of leukemic cell lines; erucin activity was variable among cell types. Cellular exposure to sulforaphane in combination with ATO resulted in a dramatic increase in levels of reactive oxygen species (ROS) compared to treatment with either agent alone. Sulforaphane, alone or with ATO, decreased intracellular glutathione (GSH) content. Furthermore, addition of the free radical scavenger N-acetyl-l-cysteine (NAC) rescued cells from ATO/isothiocyanate-mediated cytotoxicity. Our data suggest that isothiocyanates enhance the cytotoxic effects of ATO through a ROS-dependent mechanism. Combinatorial treatment with isothiocyanates and ATO might provide a promising therapeutic approach for a variety of myeloid malignancies
PMCID:2815001
PMID: 19540589
ISSN: 0145-2126
CID: 106489
Alzheimer's-related endosome dysfunction in Down syndrome is Abeta-independent but requires APP and is reversed by BACE-1 inhibition
Jiang, Ying; Mullaney, Kerry A; Peterhoff, Corrinne M; Che, Shaoli; Schmidt, Stephen D; Boyer-Boiteau, Anne; Ginsberg, Stephen D; Cataldo, Anne M; Mathews, Paul M; Nixon, Ralph A
An additional copy of the beta-amyloid precursor protein (APP) gene causes early-onset Alzheimer's disease (AD) in trisomy 21 (DS). Endosome dysfunction develops very early in DS and AD and has been implicated in the mechanism of neurodegeneration. Here, we show that morphological and functional endocytic abnormalities in fibroblasts from individuals with DS are reversed by lowering the expression of APP or beta-APP-cleaving enzyme 1 (BACE-1) using short hairpin RNA constructs. By contrast, endosomal pathology can be induced in normal disomic (2N) fibroblasts by overexpressing APP or the C-terminal APP fragment generated by BACE-1 (betaCTF), all of which elevate the levels of betaCTFs. Expression of a mutant form of APP that cannot undergo beta-cleavage had no effect on endosomes. Pharmacological inhibition of APP gamma-secretase, which markedly reduced Abeta production but raised betaCTF levels, also induced AD-like endosome dysfunction in 2N fibroblasts and worsened this pathology in DS fibroblasts. These findings strongly implicate APP and the betaCTF of APP, and exclude Abeta and the alphaCTF, as the cause of endocytic pathway dysfunction in DS and AD, underscoring the potential multifaceted value of BACE-1 inhibition in AD therapeutics
PMCID:2824382
PMID: 20080541
ISSN: 1091-6490
CID: 126490
Inhibition of the K+ channel KCa3.1 ameliorates T cell-mediated colitis
Di, Lie; Srivastava, Shekhar; Zhdanova, Olga; Ding, Yi; Li, Zhai; Wulff, Heike; Lafaille, Maria; Skolnik, Edward Y
The calcium-activated K(+) channel KCa3.1 plays an important role in T lymphocyte Ca(2+) signaling by helping to maintain a negative membrane potential, which provides an electrochemical gradient to drive Ca(2+) influx. To assess the role of KCa3.1 channels in lymphocyte activation in vivo, we studied T cell function in KCa3.1(-/-) mice. CD4 T helper (i.e., Th0) cells isolated from KCa3.1(-/-) mice lacked KCa3.1 channel activity, which resulted in decreased T cell receptor-stimulated Ca(2+) influx and IL-2 production. Although loss of KCa3.1 did not interfere with CD4 T cell differentiation, both Ca(2+) influx and cytokine production were impaired in KCa3.1(-/-) Th1 and Th2 CD4 T cells, whereas T-regulatory and Th17 function were normal. We found that inhibition of KCa3.1(-/-) protected mice from developing severe colitis in two mouse models of inflammatory bowel disease, which were induced by (i) the adoptive transfer of mouse naive CD4 T cells into rag2(-/-) recipients and (ii) trinitrobenzene sulfonic acid. Pharmacologic inhibitors of KCa3.1 have already been shown to be safe in humans. Thus, if these preclinical studies continue to show efficacy, it may be possible to rapidly test whether KCa3.1 inhibitors are efficacious in patients with inflammatory bowel diseases such as Crohn's disease and ulcerative colitis
PMCID:2824388
PMID: 20080610
ISSN: 0027-8424
CID: 106594
Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation
Rihel, Jason; Prober, David A; Arvanites, Anthony; Lam, Kelvin; Zimmerman, Steven; Jang, Sumin; Haggarty, Stephen J; Kokel, David; Rubin, Lee L; Peterson, Randall T; Schier, Alexander F
A major obstacle for the discovery of psychoactive drugs is the inability to predict how small molecules will alter complex behaviors. We report the development and application of a high-throughput, quantitative screen for drugs that alter the behavior of larval zebrafish. We found that the multidimensional nature of observed phenotypes enabled the hierarchical clustering of molecules according to shared behaviors. Behavioral profiling revealed conserved functions of psychotropic molecules and predicted the mechanisms of action of poorly characterized compounds. In addition, behavioral profiling implicated new factors such as ether-a-go-go-related gene (ERG) potassium channels and immunomodulators in the control of rest and locomotor activity. These results demonstrate the power of high-throughput behavioral profiling in zebrafish to discover and characterize psychotropic drugs and to dissect the pharmacology of complex behaviors.
PMCID:2830481
PMID: 20075256
ISSN: 0036-8075
CID: 876962
Extensive proteomic screening identifies the obesity-related NYGGF4 protein as a novel LRP1-interactor, showing reduced expression in early Alzheimer's disease
Kajiwara, Yuji; Franciosi, Sonia; Takahashi, Nagahide; Krug, Lisa; Schmeidler, James; Taddei, Kevin; Haroutunian, Vahram; Fried, Ulrik; Ehrlich, Michelle; Martins, Ralph N; Gandy, Samuel; Buxbaum, Joseph D
BACKGROUND: The low-density lipoprotein receptor related protein 1 (LRP1) has been implicated in Alzheimer's disease (AD) but its signalling has not been fully evaluated. There is good evidence that the cytoplasmic domain of LRP1 is involved in protein-protein interactions, important in the cell biology of LRP1. RESULTS: We carried out three yeast two-hybrid screens to identify proteins that interact with the cytoplasmic domain of LRP1. The screens included both conventional screens as well as a novel, split-ubiquitin-based screen in which an LRP1 construct was expressed and screened as a transmembrane protein. The split-ubiquitin screen was validated in a screen using full-length amyloid protein precursor (APP), which successfully identified FE65 and FE65L2, as well as novel interactors (Rab3a, Napg, and ubiquitin b). Using both a conventional screen as well as the split-ubiquitin screen, we identified NYGGF4 as a novel LRP1 interactor. The interaction between LRP1 and NYGGF4 was validated using two-hybrid assays, coprecipitation and colocalization in mammalian cells. Mutation analysis demonstrated a specific interaction of NYGGF4 with an NPXY motif that required an intact tyrosine residue. Interestingly, while we confirmed that other LRP1 interactors we identified, including JIP1B and EB-1, were also able to bind to APP, NYGGF4 was unique in that it showed specific binding with LRP1. Expression of NYGGF4 decreased significantly in patients with AD as compared to age-matched controls, and showed decreasing expression with AD disease progression. Examination of Nyggf4 expression in mice with different alleles of the human APOE4 gene showed significant differences in Nyggf4 expression. CONCLUSIONS: These results implicate NYGGF4 as a novel and specific interactor of LRP1. Decreased expression of LRP1 and NYGGF4 over disease, evident with the presence of even moderate numbers of neuritic plaques, suggests that LRP1-NYGGF4 is a system altered early in disease. Genetic and functional studies have implicated both LRP1 and NYGGF4 in obesity and cardiovascular disease and the physical association of these proteins may reflect a common mechanism. This is particularly interesting in light of the dual role of ApoE in both cardiovascular risk and AD. The results support further studies on the functional relationship between NYGGF4 and LRP1
PMCID:2823744
PMID: 20205790
ISSN: 1750-1326
CID: 139881
Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer's disease mouse model
Wesson, Daniel W; Levy, Efrat; Nixon, Ralph A; Wilson, Donald A
Alzheimer's disease often results in impaired olfactory perceptual acuity-a potential biomarker of the disorder. However, the usefulness of olfactory screens to serve as informative indicators of Alzheimer's is precluded by a lack of knowledge regarding why the disease impacts olfaction. We addressed this question by assaying olfactory perception and amyloid-beta (Abeta) deposition throughout the olfactory system in mice that overexpress a mutated form of the human amyloid-beta precursor protein. Such mice displayed progressive olfactory deficits that mimic those observed clinically-some evident at 3 months of age. Also, at 3 months of age, we observed nonfibrillar Abeta deposition within the olfactory bulb-earlier than deposition within any other brain region. There was also a correlation between olfactory deficits and the spatial-temporal pattern of Abeta deposition. Therefore, nonfibrillar, versus fibrillar, Abeta-related mechanisms likely contribute to early olfactory perceptual loss in Alzheimer's disease. Furthermore, these results present the odor cross-habituation test as a powerful behavioral assay, which reflects Abeta deposition and thus may serve to monitor the efficacy of therapies aimed at reducing Abeta
PMCID:2826174
PMID: 20071513
ISSN: 1529-2401
CID: 126491