Searched for: person:da66
A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes
Neve, Richard M; Chin, Koei; Fridlyand, Jane; Yeh, Jennifer; Baehner, Frederick L; Fevr, Tea; Clark, Laura; Bayani, Nora; Coppe, Jean-Philippe; Tong, Frances; Speed, Terry; Spellman, Paul T; DeVries, Sandy; Lapuk, Anna; Wang, Nick J; Kuo, Wen-Lin; Stilwell, Jackie L; Pinkel, Daniel; Albertson, Donna G; Waldman, Frederic M; McCormick, Frank; Dickson, Robert B; Johnson, Michael D; Lippman, Marc; Ethier, Stephen; Gazdar, Adi; Gray, Joe W
Recent studies suggest that thousands of genes may contribute to breast cancer pathophysiologies when deregulated by genomic or epigenomic events. Here, we describe a model "system" to appraise the functional contributions of these genes to breast cancer subsets. In general, the recurrent genomic and transcriptional characteristics of 51 breast cancer cell lines mirror those of 145 primary breast tumors, although some significant differences are documented. The cell lines that comprise the system also exhibit the substantial genomic, transcriptional, and biological heterogeneity found in primary tumors. We show, using Trastuzumab (Herceptin) monotherapy as an example, that the system can be used to identify molecular features that predict or indicate response to targeted therapies or other physiological perturbations.
PMCID:2730521
PMID: 17157791
ISSN: 1535-6108
CID: 372672
Regional copy number-independent deregulation of transcription in cancer
Stransky, Nicolas; Vallot, Celine; Reyal, Fabien; Bernard-Pierrot, Isabelle; de Medina, Sixtina Gil Diez; Segraves, Rick; de Rycke, Yann; Elvin, Paul; Cassidy, Andrew; Spraggon, Carolyn; Graham, Alexander; Southgate, Jennifer; Asselain, Bernard; Allory, Yves; Abbou, Claude C; Albertson, Donna G; Thiery, Jean Paul; Chopin, Dominique K; Pinkel, Daniel; Radvanyi, Francois
Genetic and epigenetic alterations have been identified that lead to transcriptional deregulation in cancers. Genetic mechanisms may affect single genes or regions containing several neighboring genes, as has been shown for DNA copy number changes. It was recently reported that epigenetic suppression of gene expression can also extend to a whole region; this is known as long-range epigenetic silencing. Various techniques are available for identifying regional genetic alterations, but no large-scale analysis has yet been carried out to obtain an overview of regional epigenetic alterations. We carried out an exhaustive search for regions susceptible to such mechanisms using a combination of transcriptome correlation map analysis and array CGH data for a series of bladder carcinomas. We validated one candidate region experimentally, demonstrating histone methylation leading to the loss of expression of neighboring genes without DNA methylation.
PMID: 17099711
ISSN: 1061-4036
CID: 372682
Chromosomal instability in microsatellite-unstable and stable colon cancer
Trautmann, Karolin; Terdiman, Jonathan P; French, Amy J; Roydasgupta, Ritu; Sein, Nancy; Kakar, Sanjay; Fridlyand, Jane; Snijders, Antoine M; Albertson, Donna G; Thibodeau, Stephen N; Waldman, Frederic M
PURPOSE: The genomic instability in colon cancer can be divided into at least two major types, microsatellite instability (MSI) or chromosomal instability (CIN). Although initially felt to be mutually exclusive, recent evidence suggests that there may be overlap between the two. The aim of this study was to identify chromosomal alterations at high resolution in sporadic colon cancers with high-level microsatellite instability (MSI-H) and to compare them to those present in a set of matched microsatellite stable (MSS) tumors. EXPERIMENTAL DESIGN: Array-based comparative genomic hybridization was used to analyze a set of 23 sporadic MSI-H and 23 MSS colon cancers matched for location, gender, stage, and age. The arrays consisted of 2,464 bacterial artificial chromosome clones. RESULTS: MSI and MSS colon cancers differed significantly with respect to frequency and type of chromosomal alterations. The median fraction of genome altered was lower among MSI-H tumors than MSS tumors (2.8% versus 30.7%, P=0.00006). However, the MSI-H tumors displayed a range of genomic alterations, from the absence of detectable alterations to extensive alterations. Frequent alterations in MSI-H tumors included gains of chromosomes 8, 12, and 13, and loss of 15q14. In contrast, the most frequent alterations in MSS tumors were gains of 7, 13, 8q, and 20, and losses of 8p, 17p, and 18. A small, previously uncharacterized, genomic deletion on 16p13.2, found in 35% of MSI-H and 21% of MSS tumors, was confirmed by fluorescence in situ hybridization. CONCLUSION: MSI and CIN are not mutually exclusive forms of genomic instability in sporadic colon cancer, with MSI tumors also showing varying degrees of CIN.
PMID: 17085649
ISSN: 1078-0432
CID: 372692
Altered promoter usage characterizes monoallelic transcription arising with ERBB2 amplification in human breast cancers
Benz, Christopher C; Fedele, Vita; Xu, Fan; Ylstra, Bauke; Ginzinger, David; Yu, Mamie; Moore, Dan; Hall, Rayna Kneuper; Wolff, Daynna J; Disis, Mary L; Eppenberger-Castori, Serenella; Eppenberger, Urs; Schittulli, Francesco; Tommasi, Stefania; Paradiso, Angelo; Scott, Gary K; Albertson, Donna G
Analysis of a collection of human breast cancers (n = 150), enriched in ERBB2-positive cases (n = 57) and involving tumor genotyping relative to population-matched blood genotyping (n = 749) for a common ERBB2 single nucleotide polymorphism Ala(G)1170Pro(C), revealed that ERBB2 amplification in breast cancer is invariably monoallelic. Analysis of paired breast cancer and blood samples from informative (G1170C heterozygotic) ERBB2-positive (n = 12) and ERBB2-negative (n = 17) cases not only confirmed monoallelic amplification and ERBB2 transcriptional overexpression but also revealed that most low ERBB2 expressing breast cancers (12/17) exhibit unbalanced allelic transcription, showing 3-fold to nearly 5,000-fold preferential expression from one of two inherited alleles. To explore cis-acting transcriptional mechanisms potentially selected during ERBB2 amplification, levels of four different ERBB2 transcript variants (5.2, 4.7, 2.1, and 1.4 kb) were correlated with total (4.6 kb) ERBB2 mRNA levels in ERBB2-positive (n = 14) versus ERBB2-negative (n = 43) primary breast cancers. Relative expression of only the 2.1 kb extracellular domain-encoding splice variant and a 4.7 kb mRNA variant that uses an alternative start site were significantly increased in association with ERBB2-positivity, implicating altered promoter usage and selective transcript regulation within the ERBB2 amplicon. Altogether, these findings provide new mechanistic insights into the development of ERBB2-positive breast cancer and strong rationale for delineating candidate cis-acting regulatory elements that may link allele-specific ERBB2 transcription in premalignant breast epithelia with subsequent development of breast cancers bearing monoallelic ERBB2 amplicons.
PMID: 16883574
ISSN: 1045-2257
CID: 372712
Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome
Sharp, Andrew J; Hansen, Sierra; Selzer, Rebecca R; Cheng, Ze; Regan, Regina; Hurst, Jane A; Stewart, Helen; Price, Sue M; Blair, Edward; Hennekam, Raoul C; Fitzpatrick, Carrie A; Segraves, Rick; Richmond, Todd A; Guiver, Cheryl; Albertson, Donna G; Pinkel, Daniel; Eis, Peggy S; Schwartz, Stuart; Knight, Samantha J L; Eichler, Evan E
Genomic disorders are characterized by the presence of flanking segmental duplications that predispose these regions to recurrent rearrangement. Based on the duplication architecture of the genome, we investigated 130 regions that we hypothesized as candidates for previously undescribed genomic disorders. We tested 290 individuals with mental retardation by BAC array comparative genomic hybridization and identified 16 pathogenic rearrangements, including de novo microdeletions of 17q21.31 found in four individuals. Using oligonucleotide arrays, we refined the breakpoints of this microdeletion, defining a 478-kb critical region containing six genes that were deleted in all four individuals. We mapped the breakpoints of this deletion and of four other pathogenic rearrangements in 1q21.1, 15q13, 15q24 and 17q12 to flanking segmental duplications, suggesting that these are also sites of recurrent rearrangement. In common with the 17q21.31 deletion, these breakpoint regions are sites of copy number polymorphism in controls, indicating that these may be inherently unstable genomic regions.
PMID: 16906162
ISSN: 1061-4036
CID: 372702
Gene amplification in cancer
Albertson, Donna G
Gene amplification is a copy number increase of a restricted region of a chromosome arm. It is prevalent in some tumors and is associated with overexpression of the amplified gene(s). Amplified DNA can be organized as extrachromosomal elements, as repeated units at a single locus or scattered throughout the genome. Common chromosomal fragile sites, defects in DNA replication or telomere dysfunction might promote amplification. Some regions of amplification are complex, yet elements of the pattern are reproduced in different tumor types. A genetic basis for amplification is suggested by its relative frequency in some tumor subtypes, and its occurrence in "early" preneoplastic lesions. Clinically, amplification has prognostic and diagnostic usefulness, and is a mechanism of acquired drug resistance.
PMID: 16787682
ISSN: 0168-9525
CID: 372732
Linkage disequilibrium and heritability of copy-number polymorphisms within duplicated regions of the human genome
Locke, Devin P; Sharp, Andrew J; McCarroll, Steven A; McGrath, Sean D; Newman, Tera L; Cheng, Ze; Schwartz, Stuart; Albertson, Donna G; Pinkel, Daniel; Altshuler, David M; Eichler, Evan E
Studies of copy-number variation and linkage disequilibrium (LD) have typically excluded complex regions of the genome that are rich in duplications and prone to rearrangement. In an attempt to assess the heritability and LD of copy-number polymorphisms (CNPs) in duplication-rich regions of the genome, we profiled copy-number variation in 130 putative "rearrangement hotspot regions" among 269 individuals of European, Yoruba, Chinese, and Japanese ancestry analyzed by the International HapMap Consortium. Eighty-four hotspot regions, corresponding to 257 bacterial artificial chromosome (BAC) probes, showed evidence of copy-number differences. Despite a predisposing genetic architecture, no polymorphism was ever observed in the remaining 46 "rearrangement hotspots," and we suggest these represent excellent candidate sites for pathogenic rearrangements. We used a combination of BAC-based and high-density customized oligonucleotide arrays to resolve the molecular basis of structural rearrangements. For common variants (frequency >10%), we observed a distinct bias against copy-number losses, suggesting that deletions are subject to purifying selection. Heritability estimates did not differ significantly from 1.0 among the majority (30 of 34) of loci analyzed, consistent with normal Mendelian inheritance. Some of the CNPs in duplication-rich regions showed strong LD with nearby single-nucleotide polymorphisms (SNPs) and were observed to segregate on ancestral SNP haplotypes. However, LD with the best available SNP markers was weaker than has been reported for deletion polymorphisms in less complex regions of the genome. These observations may be accounted for by a low density of SNP data in duplicated regions, challenges in mapping and typing the CNPs, and the possibility that CNPs in these regions have rearranged on multiple haplotype backgrounds. Our results underscore the need for complete maps of genetic variation in duplication-rich regions of the genome.
PMCID:1559496
PMID: 16826518
ISSN: 0002-9297
CID: 372722
Increased gene copy numbers at chromosome 20q are frequent in both squamous cell carcinomas and adenocarcinomas of the cervix
Wilting, S M; Snijders, P J F; Meijer, G A; Ylstra, B; van den Ijssel, P R L A; Snijders, A M; Albertson, D G; Coffa, J; Schouten, J P; van de Wiel, M A; Meijer, C J L M; Steenbergen, R D M
Genome-wide microarray-based comparative genomic hybridization (array CGH) was used to identify common chromosomal alterations involved in cervical carcinogenesis as a first step towards the discovery of novel biomarkers. The genomic profiles of nine squamous cell carcinomas (SCCs) and seven adenocarcinomas (AdCAs), as well as four human papillomavirus (HPV)-immortalized keratinocyte cell lines, were assessed. On a genome-wide scale, SCCs showed significantly more gains than AdCAs. More specifically, there was a striking and highly significant difference between the two histological types for gain at 3q12.1-28, which was predominantly observed in SCC. Other frequent alterations included gains of 1q21.1-31.1 and 20q11.21-13.33, and losses of 11q22.3-25 and 13q14.3-21.33. Subsequent FISH analysis for hTR, located at 3q26, confirmed the presence of 3q gain in SCCs and HPV-immortalized cell lines. Fine mapping of chromosome 20q using multiplex ligation-dependent probe amplification (MLPA) showed copy number increases for a number of genes located at 20q11-q12, including DNMT3B and TOP1. For DNMT3B, this correlated with elevated mRNA expression in 79% of cases. In conclusion, the assessment of frequent genomic alterations resulted in the identification of potential novel biomarkers, which may ultimately enable a better risk stratification of high-risk (hr)-HPV-positive women.
PMID: 16538612
ISSN: 0022-3417
CID: 880772
A large field CCD system for quantitative imaging of microarrays
Hamilton, G; Brown, N; Oseroff, V; Huey, B; Segraves, R; Sudar, D; Kumler, J; Albertson, D; Pinkel, D
We describe a charge-coupled device (CCD) imaging system for microarrays capable of acquiring quantitative, high dynamic range images of very large fields. Illumination is supplied by an arc lamp, and filters are used to define excitation and emission bands. The system is linear down to fluorochrome densities <<1 molecule/microm2. The ratios of the illumination intensity distributions for all excitation wavelengths have a maximum deviation approximately +/-4% over the object field, so that images can be analyzed without computational corrections for the illumination pattern unless higher accuracy is desired. Custom designed detection optics produce achromatic images of the spectral region from approximately 450 to approximately 750 nm. Acquisition of a series of images of multiple fluorochromes from multiple arrays occurs under computer control. The version of the system described in detail provides images of 20 mm square areas using a 27 mm square, 2K x 2K pixel, cooled CCD chip with a well depth of approximately 10(5) electrons, and provides ratio measurements accurate to a few percent over a dynamic range in intensity >1000. Resolution referred to the sample is 10 microm, sufficient for obtaining quantitative multicolor images from >30,000 array elements in an 18 mm x 18 mm square.
PMCID:1456328
PMID: 16670425
ISSN: 1362-4962
CID: 2758942
Breast tumor copy number aberration phenotypes and genomic instability
Fridlyand, Jane; Snijders, Antoine M; Ylstra, Bauke; Li, Hua; Olshen, Adam; Segraves, Richard; Dairkee, Shanaz; Tokuyasu, Taku; Ljung, Britt Marie; Jain, Ajay N; McLennan, Jane; Ziegler, John; Chin, Koei; Devries, Sandy; Feiler, Heidi; Gray, Joe W; Waldman, Frederic; Pinkel, Daniel; Albertson, Donna G
BACKGROUND: Genomic DNA copy number aberrations are frequent in solid tumors, although the underlying causes of chromosomal instability in tumors remain obscure. Genes likely to have genomic instability phenotypes when mutated (e.g. those involved in mitosis, replication, repair, and telomeres) are rarely mutated in chromosomally unstable sporadic tumors, even though such mutations are associated with some heritable cancer prone syndromes. METHODS: We applied array comparative genomic hybridization (CGH) to the analysis of breast tumors. The variation in the levels of genomic instability amongst tumors prompted us to investigate whether alterations in processes/genes involved in maintenance and/or manipulation of the genome were associated with particular types of genomic instability. RESULTS: We discriminated three breast tumor subtypes based on genomic DNA copy number alterations. The subtypes varied with respect to level of genomic instability. We find that shorter telomeres and altered telomere related gene expression are associated with amplification, implicating telomere attrition as a promoter of this type of aberration in breast cancer. On the other hand, the numbers of chromosomal alterations, particularly low level changes, are associated with altered expression of genes in other functional classes (mitosis, cell cycle, DNA replication and repair). Further, although loss of function instability phenotypes have been demonstrated for many of the genes in model systems, we observed enhanced expression of most genes in tumors, indicating that over expression, rather than deficiency underlies instability. CONCLUSION: Many of the genes associated with higher frequency of copy number aberrations are direct targets of E2F, supporting the hypothesis that deregulation of the Rb pathway is a major contributor to chromosomal instability in breast tumors. These observations are consistent with failure to find mutations in sporadic tumors in genes that have roles in maintenance or manipulation of the genome.
PMCID:1459181
PMID: 16620391
ISSN: 1471-2407
CID: 372742