Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14036


Neural stem cell transcriptional networks highlight genes essential for nervous system development

Southall, Tony D; Brand, Andrea H
Neural stem cells must strike a balance between self-renewal and multipotency, and differentiation. Identification of the transcriptional networks regulating stem cell division is an essential step in understanding how this balance is achieved. We have shown that the homeodomain transcription factor, Prospero, acts to repress self-renewal and promote differentiation. Among its targets are three neural stem cell transcription factors, Asense, Deadpan and Snail, of which Asense and Deadpan are repressed by Prospero. Here, we identify the targets of these three factors throughout the genome. We find a large overlap in their target genes, and indeed with the targets of Prospero, with 245 genomic loci bound by all factors. Many of the genes have been implicated in vertebrate stem cell self-renewal, suggesting that this core set of genes is crucial in the switch between self-renewal and differentiation. We also show that multiply bound loci are enriched for genes previously linked to nervous system phenotypes, thereby providing a shortcut to identifying genes important for nervous system development.
PMCID:2770102
PMID: 19851284
ISSN: 1460-2075
CID: 5193032

Antioxidant-induced modification of INrf2 cysteine 151 and PKC-delta-mediated phosphorylation of Nrf2 serine 40 are both required for stabilization and nuclear translocation of Nrf2 and increased drug resistance

Niture, Suryakant K; Jain, Abhinav K; Jaiswal, Anil K
Antioxidants cause dissociation of nuclear factor erythroid 2-related factor 2 (Nrf2) from inhibitor of Nrf2 (INrf2) and so Nrf2:INrf2 can serve as a sensor of oxidative stress. Nrf2 translocates to the nucleus, binds to antioxidant response element (ARE) and activates defensive gene expression, which protects cells. Controversies exist regarding the role of antioxidant-induced modification of INrf2 cysteine 151 or protein kinase C (PKC)-mediated phosphorylation of Nrf2 serine 40 in the release of Nrf2 from INrf2. In addition, the PKC isoform that phosphorylates Nrf2S40 remains unknown. Here, we demonstrate that antioxidant-induced PKC-delta-mediated phosphorylation of Nrf2S40 leads to release of Nrf2 from INrf2. This was evident from specific chemical inhibitors of PKC isoenzymes in reporter assays, in vitro kinase assays with purified Nrf2 and PKC isoenzymes, in vivo analysis with dominant-negative mutants and siRNA against PKC isoforms, use of PKC-delta(+/+) and PKC-delta(-/-) cells, and use of Nrf2S40 phospho-specific antibody. The studies also showed that antioxidant-induced INrf2C151 modification was insufficient for the dissociation of Nrf2 from INrf2. PKC-delta-mediated Nrf2S40 phosphorylation was also required. Nrf2 and mutant Nrf2S40A both bind to INrf2. However, antioxidant treatment led to release of Nrf2 but not Nrf2S40A from INrf2. In addition, Nrf2 and mutant Nrf2S40A both failed to dissociate from mutant INrf2C151A. Furthermore, antioxidant-induced ubiquitylation of INrf2 in PKC-delta(+/+) and PKC-delta(-/-) cells occurred, but Nrf2 failed to be released in PKC-delta(-/-) cells. The antioxidant activation of Nrf2 reduced etoposide-mediated DNA fragmentation and promoted cell survival in PKC-delta(+/+) but not in PKC-delta(-/-) cells. These data together demonstrate that both modification of INrf2C151 and PKC-delta-mediated phosphorylation of Nrf2S40 play crucial roles in Nrf2 release from INrf2, antioxidant induction of defensive gene expression, promoting cell survival, and increasing drug resistance.
PMCID:2787459
PMID: 19920073
ISSN: 0021-9533
CID: 989472

Actions of octocoral and tobacco cembranoids on nicotinic receptors

Ferchmin, P A; Pagan, One R; Ulrich, Henning; Szeto, Ada C; Hann, Richard M; Eterovic, Vesna A
Nicotinic acetylcholine receptors (AChRs) are pentameric proteins that form agonist-gated cation channels through the plasma membrane. AChR agonists and antagonists are potential candidates for the treatment of neurodegenerative diseases. Cembranoids are naturally occurring diterpenoids that contain a 14-carbon ring. These diterpenoids interact with AChRs in complex ways: as irreversible inhibitors at the agonist sites, as noncompetitive inhibitors, or as positive modulators, but no cembranoid was ever shown to have agonistic activity on AChRs. The cembranoid eupalmerin acetate displays positive modulation of agonist-induced currents in the muscle-type AChR and in the related gamma-aminobutyric acid (GABA) type A receptor. Moreover, cembranoids display important biological effects, many of them mediated by nicotinic receptors. Cembranoids from tobacco are neuroprotective through a nicotinic anti-apoptotic mechanism preventing excitotoxic neuronal death which in part could result from anti-inflammatory properties of cembranoids. Moreover, tobacco cembranoids also have anti-inflammatory properties which could enhance their neuroprotective properties. Cembranoids from tobacco affect nicotine-related behavior: they increase the transient initial ataxia caused by first nicotine injection into naive rats and inhibit the expression of locomotor sensitization to repeated injections of nicotine. In addition, cembranoids are known to act as anti-tumor compounds. In conclusion, cembranoids provide a promising source of lead drugs for many clinical areas, including neuroprotection, smoking-cessation, and anti-cancer therapies.
PMCID:2783377
PMID: 19281835
ISSN: 0041-0101
CID: 173842

Ambipolar-transporting coaxial nanotubes with a tailored molecular graphene-fullerene heterojunction

Yamamoto, Yohei; Zhang, Guanxin; Jin, Wusong; Fukushima, Takanori; Ishii, Noriyuki; Saeki, Akinori; Seki, Shu; Tagawa, Seiichi; Minari, Takeo; Tsukagoshi, Kazuhito; Aida, Takuzo
Despite a large steric bulk of C(60), a molecular graphene with a covalently linked C(60) pendant [hexabenzocoronene (HBC)-C(60); 1] self-assembles into a coaxial nanotube whose wall consists of a graphite-like pi-stacked HBC array, whereas the nanotube surface is fully covered by a molecular layer of clustering C(60). Because of this explicit coaxial configuration, the nanotube exhibits an ambipolar character in the field-effect transistor output [hole mobility (micro(h)) = 9.7 x 10(-7) cm(2) V(-1) s(-1); electron mobility (micro(e)) = 1.1 x 10(-5) cm(2) V(-1) s(-1)] and displays a photovoltaic response upon light illumination. Successful coassembly of 1 and an HBC derivative without C(60) (2) allows for tailoring the p/n heterojunction in the nanotube, so that its ambipolar carrier transport property can be optimized for enhancing the open-circuit voltage in the photovoltaic output. As evaluated by an electrodeless method called flash-photolysis time-resolved microwave conductivity technique, the intratubular hole mobility (2.0 cm(2) V(-1) s(-1)) of a coassembled nanotube containing 10 mol % of HBC-C(60) (1) is as large as the intersheet mobility in graphite. The homotropic nanotube of 2 blended with a soluble C(60) derivative [(6,6)-phenyl C(61) butyric acid methyl ester] displayed a photovoltaic response with a much different composition dependency, where the largest open-circuit voltage attained was obviously lower than that realized by the coassembly of 1 and 2.
PMCID:2795534
PMID: 19940243
ISSN: 1091-6490
CID: 3172162

Deficiency of pRb family proteins and p53 in invasive urothelial tumorigenesis

He, Feng; Mo, Lan; Zheng, Xiao-Yong; Hu, Changkun; Lepor, Herbert; Lee, Eva Y-H P; Sun, Tung-Tien; Wu, Xue-Ru
Defects in pRb tumor suppressor pathway occur in approximately 50% of the deadly muscle-invasive urothelial carcinomas in humans and urothelial carcinoma is the most prevalent epithelial cancer in long-term survivors of hereditary retinoblastomas caused by loss-of-function RB1 mutations. Here, we show that conditional inactivation of both RB1 alleles in mouse urothelium failed to accelerate urothelial proliferation. Instead, it profoundly activated the p53 pathway, leading to extensive apoptosis, and selectively induced pRb family member p107. Thus, pRb loss triggered multiple fail-safe mechanisms whereby urothelial cells evade tumorigenesis. Additional loss of p53 in pRb-deficient urothelial cells removed these p53-dependent tumor barriers, resulting in late-onset hyperplasia, umbrella cell nuclear atypia, and rare-occurring low-grade, superficial papillary bladder tumors, without eliciting invasive carcinomas. Importantly, mice deficient in both pRb and p53, but not those deficient in either protein alone, were highly susceptible to subthreshold carcinogen exposure and developed invasive urothelial carcinomas that strongly resembled the human counterparts. The invasive lesions had a marked reduction of p107 but not p130 of the pRb family. Our data provide compelling evidence, indicating that urothelium, one of the slowest cycling epithelia, is remarkably resistant to transformation by pRb or p53 deficiency; that concurrent loss of these two tumor suppressors is necessary but insufficient to initiate urothelial tumorigenesis along the invasive pathway; that p107 may play a critical role in suppressing invasive urothelial tumor formation; and that replacing/restoring the function of pRb, p107, or p53 could be explored as a potential therapeutic strategy to block urothelial tumor progression
PMCID:2794922
PMID: 19951992
ISSN: 1538-7445
CID: 105925

APOE {epsilon}4 and bapineuzumab: Infusing pharmacogenomics into Alzheimer disease therapeutics [Editorial]

Kaufer, Dan; Gandy, Sam
PMID: 19923549
ISSN: 1526-632x
CID: 139849

Physician referral for fertility preservation in oncology patients: a national study of practice behaviors

Quinn, Gwendolyn P; Vadaparampil, Susan T; Lee, Ji-Hyun; Jacobsen, Paul B; Bepler, Gerold; Lancaster, Johnathan; Keefe, David L; Albrecht, Terrance L
PURPOSE: Cancer survival rates are improving, and the focus is moving toward quality survival. Fertility is a key aspect of quality of life for cancer patients of childbearing age. Although cancer treatment may impair fertility, some patients may benefit from referral to a specialist before treatment. However, the majority of studies examining patient recall of discussion and referral for fertility preservation (FP) show that less than half receive this information. This study examined the referral practices of oncologists in the United States. METHODS: This study examined oncologists' referral practice patterns for FP among US physicians using the American Medical Association Physician Masterfile database. A 53-item survey was administered via mail and Internet to a stratified random sample of US physicians. RESULTS: Forty-seven percent of respondents routinely refer cancer patients of childbearing age to a reproductive endocrinologist. Referrals were more likely among female physicians (P = .004), those with favorable attitudes (P = .043), and those whose patients routinely ask about FP (odds ratio = 2.09; 95% CI, 1.31 to 3.33). CONCLUSION: Less than half of US physicians are following the guidelines from the American Society of Clinical Oncology, which suggest that all patients of childbearing age should be informed about FP
PMID: 19826115
ISSN: 1527-7755
CID: 144119

The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate

Li, Yan; Trojer, Patrick; Xu, Chong-Feng; Cheung, Peggie; Kuo, Alex; Drury, William J 3rd; Qiao, Qi; Neubert, Thomas A; Xu, Rui-Ming; Gozani, Or; Reinberg, Danny
The NSD (nuclear receptor SET domain-containing) family of histone lysine methyltransferases is a critical participant in chromatin integrity as evidenced by the number of human diseases associated with the aberrant expression of its family members. Yet, the specific targets of these enzymes are not clear, with marked discrepancies being reported in the literature. We demonstrate that NSD2 can exhibit disparate target preferences based on the nature of the substrate provided. The NSD2 complex purified from human cells and recombinant NSD2 both exhibit specific targeting of histone H3 lysine 36 (H3K36) when provided with nucleosome substrates, but histone H4 lysine 44 is the primary target in the case of octamer substrates, irrespective of the histones being native or recombinant. This disparity is negated when NSD2 is presented with octamer targets in conjunction with short single- or double-stranded DNA. Although the octamers cannot form nucleosomes, the target is nonetheless nucleosome-specific as is the product, dimethylated H3K36. This study clarifies in part the previous discrepancies reported with respect to NSD targets. We propose that DNA acts as an allosteric effector of NSD2 such that H3K36 becomes the preferred target
PMCID:2797197
PMID: 19808676
ISSN: 1083-351x
CID: 105498

Clathrin and AP1B: key roles in basolateral trafficking through trans-endosomal routes

Gonzalez, Alfonso; Rodriguez-Boulan, Enrique
Research following introduction of the MDCK model system to study epithelial polarity (1978) led to an initial paradigm that posited independent roles of the trans Golgi network (TGN) and recycling endosomes (RE) in the generation of, respectively, biosynthetic and recycling routes of plasma membrane (PM) proteins to apical and basolateral PM domains. This model dominated the field for 20 years. However, studies over the past decade and the discovery of the involvement of clathrin and clathrin adaptors in protein trafficking to the basolateral PM has led to a new paradigm. TGN and RE are now believed to cooperate closely in both biosynthetic and recycling trafficking routes. Here, we critically review these recent advances and the questions that remain unanswered.
PMCID:4286365
PMID: 19854182
ISSN: 0014-5793
CID: 375152

The temporal logic of causal structures

Chapter by: Kleinberg, Samantha; Mishra, Bud
in: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, UAI 2009 by
[S.l.] : Elsevier Inc., 2009
pp. 303-312
ISBN:
CID: 2852342