Searched for: school:SOM
Department/Unit:Cell Biology
N-cadherin mediates interaction between precursor cells in the subventricular zone and regulates further differentiation
Yagita, Yoshiki; Sakurai, Takeshi; Tanaka, Hidekazu; Kitagawa, Kazuo; Colman, David R; Shan, Weisong
Neurogenesis and cell differentiation in the brain continues throughout life. In the subventricular zone and rostral migratory stream, precursor cells contact each other. Cell-cell interactions mediated via adhesion molecules are no doubt involved in establishing and maintaining the neurogenic ability of these cells. Here, we demonstrate that N-cadherin plays important roles in forming cell clusters and in regulating cell differentiation. N-cadherin is abundantly expressed in chain migrating cells in the subventricular zone and rostral migratory stream but is down-regulated after cells exit these regions. We also show that neurosphere formation is inhibited via suppression of N-cadherin function and that N-cadherin expression is decreased after induction of neurosphere differentiation. Furthermore, we demonstrate that functional blockade of N-cadherin can enhance glial cell differentiation in explant cultures of precursors from the subventricular zone.
PMID: 19301425
ISSN: 0360-4012
CID: 605752
Hypermethylation of the DLC1 CpG island does not alter gene expression in canine lymphoma
Bryan, Jeffrey N; Jabbes, Mohamed; Berent, Linda M; Arthur, Gerald L; Taylor, Kristen H; Rissetto, Kerry C; Henry, Carolyn J; Rahmatpanah, Farah; Rankin, Wendi V; Villamil, Jose A; Lewis, Michael R; Caldwell, Charles W
BACKGROUND:This study is a comparative epigenetic evaluation of the methylation status of the DLC1 tumor suppressor gene in naturally-occurring canine lymphoma. Canine non-Hodgkin's lymphoma (NHL) has been proposed to be a relevant preclinical model that occurs spontaneously and may share causative factors with human NHL due to a shared home environment. The canine DLC1 mRNA sequence was derived from normal tissue. Using lymphoid samples from 21 dogs with NHL and 7 normal dogs, the methylation status of the promoter CpG island of the gene was defined for each sample using combined bisulfite restriction analysis (COBRA), methylation-specific PCR (MSP), and bisulfite sequencing methods. Relative gene expression was determined using real-time PCR. RESULTS:The mRNA sequence of canine DLC1 is highly similar to the human orthologue and contains all protein functional groups, with 97% or greater similarity in functional regions. Hypermethylation of the 5' and 3' flanking regions of the promoter was statistically significantly associated with the NHL phenotype, but was not associated with silencing of expression or differences in survival. CONCLUSION/CONCLUSIONS:The canine DLC1 is constructed highly similarly to the human gene, which has been shown to be an important tumor suppressor in many forms of cancer. As in human NHL, the promoter CpG island of DLC1 in canine NHL samples is abnormally hypermethylated, relative to normal lymphoid tissue. This study confirms that hypermethylation occurs in canine cancers, further supporting the use of companion dogs as comparative models of disease for evaluation of carcinogenesis, biomarker diagnosis, and therapy.
PMCID:2784477
PMID: 19912643
ISSN: 1471-2156
CID: 4724782
N-terminally truncated C protein, CNDelta25, of human parainfluenza virus type 3 is a potent inhibitor of viral replication
Mao, Hongxia; Chattopadhyay, Santanu; Banerjee, Amiya K
The C protein of human parainfluenza virus type 3 (HPIV3) is a multifunctional accessory protein that inhibits viral transcription and interferon (IFN) signaling. In the present study, we found that removal of N-terminal 25 or 50 amino acid residues from the C protein (CNDelta25 or CNDelta50) totally abolished viral RNA synthesis in the HPIV3 minigenome system. Further N-terminal or C-terminal deletion impaired the inhibitory ability of CNDelta25 and CNDelta50. Subsequent mutagenesis analysis suggested that the N-terminal-charged amino acid residues (K3, K6, K12, E16, and R24) contribute to the higher inhibition caused by CNDelta25 than the C protein. Consistent with viral RNA synthesis inhibition, the growth of HPIV3 was significantly decreased by 5 logs in HeLa-derived cell line expressing CNDelta25. Interestingly, replication of respiratory syncytial virus (RSV), another important respiratory tract pathogen, was also strongly inhibited in the presence of CNDelta25. These findings provide a promising potential to use CNDelta25 as an antiviral agent against the clinically important respiratory tract diseases caused by HPIV3 and RSV.
PMCID:2767389
PMID: 19747707
ISSN: 0042-6822
CID: 1444312
Nrf2:INrf2 (Keap1) signaling in oxidative stress
Kaspar, James W; Niture, Suryakant K; Jaiswal, Anil K
Nrf2:INrf2 (Keap1) are cellular sensors of chemical- and radiation-induced oxidative and electrophilic stress. Nrf2 is a nuclear transcription factor that controls the expression and coordinated induction of a battery of defensive genes encoding detoxifying enzymes and antioxidant proteins. This is a mechanism of critical importance for cellular protection and cell survival. Nrf2 is retained in the cytoplasm by an inhibitor, INrf2 which functions as an adapter for Cul3/Rbx1-mediated degradation of Nrf2. In response to oxidative/electrophilic stress, Nrf2 is switched on and then off by distinct early and delayed mechanisms. Oxidative/electrophilic modification of INrf2 cysteine 151 and/or protein kinase C phosphorylation of Nrf2 serine 40 results in the escape or release of Nrf2 from INrf2. Nrf2 is stabilized and translocates to the nucleus, forms heterodimers with unknown proteins, and binds the antioxidant response element, which leads to coordinated activation of gene expression. It takes less than 15 min from the time of exposure to switch on nuclear import of Nrf2. This is followed by activation of a delayed mechanism that controls the switching off of Nrf2 activation of gene expression. GSK3beta phosphorylates Fyn at an unknown threonine residue(s), leading to the nuclear localization of Fyn. Fyn phosphorylates Nrf2 tyrosine 568, resulting in the nuclear export of Nrf2, binding with INrf2, and degradation of Nrf2. The switching on and off of Nrf2 protects cells against free radical damage, prevents apoptosis, and promotes cell survival.
PMCID:2763938
PMID: 19666107
ISSN: 0891-5849
CID: 989442
Paradoxical coupling of triglyceride synthesis and fatty acid oxidation in skeletal muscle overexpressing DGAT1
Liu, Li; Shi, Xiaojing; Choi, Cheol Soo; Shulman, Gerald I; Klaus, Katherine; Nair, K Sreekumaran; Schwartz, Gary J; Zhang, Yiying; Goldberg, Ira J; Yu, Yi-Hao
OBJECTIVE: Transgenic expression of diacylglycerol acyltransferase-1 (DGAT1) in skeletal muscle leads to protection against fat-induced insulin resistance despite accumulation of intramuscular triglyceride, a phenomenon similar to what is known as the "athlete paradox." The primary objective of this study is to determine how DGAT1 affects muscle fatty acid oxidation in relation to whole-body energy metabolism and insulin sensitivity. RESEARCH DESIGN AND METHODS: We first quantified insulin sensitivity and the relative tissue contributions to the improved whole-body insulin sensitivity in muscle creatine kisase (MCK)-DGAT1 transgenic mice by hyperinsulinemic-euglycemic clamps. Metabolic consequences of DGAT1 overexpression in skeletal muscles were determined by quantifying triglyceride synthesis/storage (anabolic) and fatty acid oxidation (catabolic), in conjunction with gene expression levels of representative marker genes in fatty acid metabolism. Whole-body energy metabolism including food consumption, body weights, oxygen consumption, locomotor activity, and respiration exchange ratios were determined at steady states. RESULTS: MCK-DGAT1 mice were protected against muscle lipoptoxicity, although they remain susceptible to hepatic lipotoxicity. While augmenting triglyceride synthesis, DGAT1 overexpression also led to increased muscle mitochondrial fatty acid oxidation efficiency, as compared with wild-type muscles. On a high-fat diet, MCK-DGAT1 mice displayed higher basal metabolic rates and 5-10% lower body weights compared with wild-type littermates, whereas food consumption was not different. CONCLUSIONS: DGAT1 overexpression in skeletal muscle led to parallel increases in triglyceride synthesis and fatty acid oxidation. Seemingly paradoxical, this phenomenon is characteristic of insulin-sensitive myofibers and suggests that DGAT1 plays an active role in metabolic "remodeling" of skeletal muscle coupled with insulin sensitization.
PMCID:2768165
PMID: 19675136
ISSN: 0012-1797
CID: 762322
Radiation carcinogenesis in context: how do irradiated tissues become tumors?
Barcellos-Hoff, MH; Nguyen, DH
It is clear from experimental studies that genotype is an important determinant of cancer susceptibility in general, and for radiation carcinogenesis specifically. It has become increasingly clear that genotype influences not only the ability to cope with DNA damage but also influences the cooperation of other tissues, like the vasculature and immune system, necessary for the establishment of cancer. Our experimental data and that of others suggest that the carcinogenic action of ionizing radiation (IR) can also be considered a two-compartment problem: while IR can alter genomic sequence as a result of DNA damage, it can also induce signals that alter multicellular interactions and phenotypes that underpin carcinogenesis. Rather than being accessory or secondary to genetic damage, we propose that such non-targeted radiation effects create the critical context that promotes cancer development. This review focuses on experimental studies that clearly define molecular mechanisms by which cell interactions contribute to cancer in different organs, and addresses how non-targeted radiation effects may similarly act though the microenvironment. The definition of non-targeted radiation effects and their dose dependence could modify the current paradigms for radiation risk assessment since radiation non-targeted effects, unlike DNA damage, are amenable to intervention. The implications of this perspective in terms of reducing cancer risk after exposure are discussed. $$:
PMCID:2761885
PMID: 19820454
ISSN: 0017-9078
CID: 104662
The aryl hydrocarbon receptor nuclear translocator (Arnt) is required for tumor initiation by benzo[a]pyrene
Shi, Shengli; Yoon, Diana Y; Hodge-Bell, Kimberly C; Bebenek, Ilona G; Whitekus, Michael J; Zhang, Ruixue; Cochran, Alistair J; Huerta-Yepez, Sara; Yim, Sun-Hee; Gonzalez, Frank J; Jaiswal, Anil K; Hankinson, Oliver
Benzo[a]pyrene (B[a]P) is a ligand for the aryl hydrocarbon receptor (Ahr). After binding ligand, Ahr dimerizes with the aryl hydrocarbon receptor nuclear translocator (Arnt) protein, and the dimer upregulates the transcription of Cyp1a1, Cyp1b1 and other enzymes involved in the metabolic activation of B[a]P. Arnt null mice die in utero. Mice in which Arnt deletion occurs constitutively in the epidermis die perinatally. In the current study, mice were developed in which the Arnt gene could be deleted specifically in adult skin epidermis. This deletion had no overt pathological effect. Homozygosity for a null reduced nicotinamide adenine dinucleotide (phosphate): quinone oxidoreductase allele was introduced into the above mouse strain to render it more susceptible to tumor initiation by B[a]P. Deletion of Arnt in the epidermis of this strain completely prevented the induction of skin tumors in a tumor initiation-promotion protocol in which a single topical application of B[a]P acted as the tumor-initiating event, and tumor promotion was provided by repeated topical applications of 12-O-tetradecanoyl phorbol-13-acetate (TPA). In contrast, deletion of Arnt did not prevent the induction of skin tumors in a protocol also using TPA as the promoter but using as the initiator N-methyl-N'-nitro-N-nitrosoguanidine, whose activity is unlikely to be affected by the activity of Ahr, Arnt or their target genes. These observations demonstrate that Arnt is required for tumor initiation by B[a]P in this system.
PMCID:2791324
PMID: 19755658
ISSN: 0143-3334
CID: 989452
The duration of Fgf8 isthmic organizer expression is key to patterning different tectal-isthmo-cerebellum structures
Sato, Tatsuya; Joyner, Alexandra L
The isthmic organizer and its key effector molecule, fibroblast growth factor 8 (Fgf8), have been cornerstones in studies of how organizing centers differentially pattern tissues. Studies have implicated different levels of Fgf8 signaling from the mid/hindbrain boundary (isthmus) as being responsible for induction of different structures within the tectal-isthmo-cerebellum region. However, the role of Fgf8 signaling for different durations in patterning tissues has not been studied. To address this, we conditionally ablated Fgf8 in the isthmus and uncovered that prolonged expression of Fgf8 is required for the structures found progressively closer to the isthmus to form. We found that cell death cannot be the main factor accounting for the loss of brain structures near the isthmus, and instead demonstrate that tissue transformation underlies the observed phenotypes. We suggest that the remaining Fgf8 and Fgf17 signaling in our temporal Fgf8 conditional mutants is sufficient to ensure survival of most midbrain/hindbrain cells near the isthmus. One crucial role for sustained Fgf8 function is in repressing Otx2 in the hindbrain, thereby allowing the isthmus and cerebellum to form. A second requirement for sustained Fgf8 signaling is to induce formation of a posterior tectum. Finally, Fgf8 is also required to maintain the borders of expression of a number of key genes involved in tectal-isthmo-cerebellum development. Thus, the duration as well as the strength of Fgf8 signaling is key to patterning of the mid/hindbrain region. By extrapolation, the length of Fgf8 expression could be crucial to Fgf8 function in other embryonic organizers
PMCID:2761110
PMID: 19793884
ISSN: 1477-9129
CID: 114460
Analysis of gene expression in PTHrP-/- mammary buds supports a role for BMP signaling and MMP2 in the initiation of ductal morphogenesis
Hens, Julie; Dann, Pamela; Hiremath, Minoti; Pan, Tien-Chi; Chodosh, Lewis; Wysolmerski, John
Parathyroid hormone-related protein (PTHrP) acts on the mammary mesenchyme and is required for proper embryonic mammary development. In order to understand PTHrP's effects on mesenchymal cells, we profiled gene expression in WT and PTHrP(-/-) mammary buds, and in WT and K14-PTHrP ventral skin at E15.5. By cross-referencing the differences in gene expression between these groups, we identified 35 genes potentially regulated by PTHrP in the mammary mesenchyme, including 6 genes known to be involved in BMP signaling. One of these genes was MMP2. We demonstrated that PTHrP and BMP4 regulate MMP2 gene expression and MMP2 activity in mesenchymal cells. Using mammary bud cultures, we demonstrated that MMP2 acts downstream of PTHrP to stimulate ductal outgrowth. Future studies on the functional role of other genes on this list should expand our knowledge of how PTHrP signaling triggers the onset of ductal outgrowth from the embryonic mammary buds.
PMCID:2862621
PMID: 19795511
ISSN: 1097-0177
CID: 2526972
Nodal morphogens
Schier, Alexander F
Nodal signals belong to the TGF-beta superfamily and are essential for the induction of mesoderm and endoderm and the determination of the left-right axis. Nodal signals can act as morphogens-they have concentration-dependent effects and can act at a distance from their source of production. Nodal and its feedback inhibitor Lefty form an activator/inhibitor pair that behaves similarly to postulated reaction-diffusion models of tissue patterning. Nodal morphogen activity is also regulated by microRNAs, convertases, TGF-beta signals, coreceptors, and trafficking factors. This article describes how Nodal morphogens pattern embryonic fields and discusses how Nodal morphogen signaling is modulated.
PMCID:2773646
PMID: 20066122
ISSN: 1943-0264
CID: 876982