Searched for: school:SOM
Department/Unit:Neuroscience Institute
Height, weight, and body mass index in patients with familial dysautonomia
Cotrina, Maria L; Morgenstein, Barr; Perez, Miguel; Norcliffe-Kaufmann, Lucy; Palma, Jose-Alberto; Kaufmann, Horacio
BACKGROUND:Children with familial dysautonomia (FD) are smaller and grow more slowly than the general population. It is unknown whether this abnormal growth is due to comorbidities that patients with FD live with, or if it is a direct effect of the disease-causing homozygous ELP-1 mutations. Here, we created growth curves for weight, height, and body mass index (BMI) in male and female children with FD to monitor the nutritional status of patients with FD. METHODS:We used the New York University (NYU) FD Registry which includes data from 680 individuals with FD who were followed longitudinally since birth. We generated sex-specific FD growth charts for three age ranges (birth to 36 months, 2 to 20 years, and 2 to 40 years) and compared them to the general population. We generated Kaplan-Meier curves to test the hypothesis that FD patients with low BMI had shorter survival than the rest of the cohort. RESULTS:Growth charts generated from 591 individuals with FD show that these patients grow more slowly, reach less height, and gain less weight than the general population. The impact of FD on height was more pronounced in girls than in boys. However, both groups showed markedly low weights, which resulted in low BMI. Low weight, but not height, is already evident at birth. In a subpopulation of FD patients, we found that treatment with growth hormone or spinal fusion surgery helped patients achieve the expected growth characteristic of FD patients, but these treatments did not lead FD patients to achieve the growth pattern of the general population. Contrary to our hypothesis, low BMI had no impact on patient survival. CONCLUSIONS:Pediatric patients with FD have lower height, weight, and BMI compared to the general pediatric population, but this does not appear to affect survival. Growth curves specific to the FD population are an important tool to monitor growth and nutritional status in pediatric patients with FD when the general population growth curves are of limited use.
PMCID:10635437
PMID: 37943786
ISSN: 1932-6203
CID: 5609872
Homeostatic NREM sleep and salience network function in adult mice exposed to ethanol during development
Shah, Prachi; Kaneria, Aayush; Fleming, Gloria; Williams, Colin R O; Sullivan, Regina M; Lemon, Christian H; Smiley, John; Saito, Mariko; Wilson, Donald A
Developmental exposure to ethanol is a leading cause of cognitive, emotional and behavioral problems, with fetal alcohol spectrum disorder (FASD) affecting more than 1:100 children. Recently, comorbid sleep deficits have been highlighted in these disorders, with sleep repair a potential therapeutic target. Animal models of FASD have shown non-REM (NREM) sleep fragmentation and slow-wave oscillation impairments that predict cognitive performance. Here we use a mouse model of perinatal ethanol exposure to explore whether reduced sleep pressure may contribute to impaired NREM sleep, and compare the function of a brain network reported to be impacted by insomnia-the Salience network-in developmental ethanol-exposed mice with sleep-deprived, saline controls. Mice were exposed to ethanol or saline on postnatal day 7 (P7) and allowed to mature to adulthood for testing. At P90, telemetered cortical recordings were made for assessment of NREM sleep in home cage before and after 4 h of sleep deprivation to assess basal NREM sleep and homeostatic NREM sleep response. To assess Salience network functional connectivity, mice were exposed to the 4 h sleep deprivation period or left alone, then immediately sacrificed for immunohistochemical analysis of c-Fos expression. The results show that developmental ethanol severely impairs both normal rebound NREM sleep and sleep deprivation induced increases in slow-wave activity, consistent with reduced sleep pressure. Furthermore, the Salience network connectome in rested, ethanol-exposed mice was most similar to that of sleep-deprived, saline control mice, suggesting a sleep deprivation-like state of Salience network function after developmental ethanol even without sleep deprivation.
PMCID:10682725
PMID: 38033546
ISSN: 1662-4548
CID: 5616972
Application of robust regression in translational neuroscience studies with non-Gaussian outcome data
Malek-Ahmadi, Michael; Ginsberg, Stephen D; Alldred, Melissa J; Counts, Scott E; Ikonomovic, Milos D; Abrahamson, Eric E; Perez, Sylvia E; Mufson, Elliott J
Linear regression is one of the most used statistical techniques in neuroscience, including the study of the neuropathology of Alzheimer's disease (AD) dementia. However, the practical utility of this approach is often limited because dependent variables are often highly skewed and fail to meet the assumption of normality. Applying linear regression analyses to highly skewed datasets can generate imprecise results, which lead to erroneous estimates derived from statistical models. Furthermore, the presence of outliers can introduce unwanted bias, which affect estimates derived from linear regression models. Although a variety of data transformations can be utilized to mitigate these problems, these approaches are also associated with various caveats. By contrast, a robust regression approach does not impose distributional assumptions on data allowing for results to be interpreted in a similar manner to that derived using a linear regression analysis. Here, we demonstrate the utility of applying robust regression to the analysis of data derived from studies of human brain neurodegeneration where the error distribution of a dependent variable does not meet the assumption of normality. We show that the application of a robust regression approach to two independent published human clinical neuropathologic data sets provides reliable estimates of associations. We also demonstrate that results from a linear regression analysis can be biased if the dependent variable is significantly skewed, further indicating robust regression as a suitable alternate approach.
PMCID:10847267
PMID: 38328735
ISSN: 1663-4365
CID: 5632352
Local and long-range GABAergic circuits in hippocampal area CA1 and their link to Alzheimer's disease
Hernández-Frausto, Melissa; Bilash, Olesia M; Masurkar, Arjun V; Basu, Jayeeta
GABAergic inhibitory neurons are the principal source of inhibition in the brain. Traditionally, their role in maintaining the balance of excitation-inhibition has been emphasized. Beyond homeostatic functions, recent circuit mapping and functional manipulation studies have revealed a wide range of specific roles that GABAergic circuits play in dynamically tilting excitation-inhibition coupling across spatio-temporal scales. These span from gating of compartment- and input-specific signaling, gain modulation, shaping input-output functions and synaptic plasticity, to generating signal-to-noise contrast, defining temporal windows for integration and rate codes, as well as organizing neural assemblies, and coordinating inter-regional synchrony. GABAergic circuits are thus instrumental in controlling single-neuron computations and behaviorally-linked network activity. The activity dependent modulation of sensory and mnemonic information processing by GABAergic circuits is pivotal for the formation and maintenance of episodic memories in the hippocampus. Here, we present an overview of the local and long-range GABAergic circuits that modulate the dynamics of excitation-inhibition and disinhibition in the main output area of the hippocampus CA1, which is crucial for episodic memory. Specifically, we link recent findings pertaining to GABAergic neuron molecular markers, electrophysiological properties, and synaptic wiring with their function at the circuit level. Lastly, given that area CA1 is particularly impaired during early stages of Alzheimer's disease, we emphasize how these GABAergic circuits may contribute to and be involved in the pathophysiology.
PMCID:10570439
PMID: 37841892
ISSN: 1662-5110
CID: 5605472
Hierarchical predictive coding in distributed pain circuits
Chen, Zhe Sage
Predictive coding is a computational theory on describing how the brain perceives and acts, which has been widely adopted in sensory processing and motor control. Nociceptive and pain processing involves a large and distributed network of circuits. However, it is still unknown whether this distributed network is completely decentralized or requires networkwide coordination. Multiple lines of evidence from human and animal studies have suggested that the cingulate cortex and insula cortex (cingulate-insula network) are two major hubs in mediating information from sensory afferents and spinothalamic inputs, whereas subregions of cingulate and insula cortices have distinct projections and functional roles. In this mini-review, we propose an updated hierarchical predictive coding framework for pain perception and discuss its related computational, algorithmic, and implementation issues. We suggest active inference as a generalized predictive coding algorithm, and hierarchically organized traveling waves of independent neural oscillations as a plausible brain mechanism to integrate bottom-up and top-down information across distributed pain circuits.
PMCID:10020379
PMID: 36937818
ISSN: 1662-5110
CID: 5449102
Implementing Telemedicine During the COVID-19 Pandemic: Disparities in Utilization in an Urban Pain Medicine Practice
Rockholt, Mika M; Addae, Gifty; Chee, Alexander; Chin, Wanda; Cuff, Germaine; Wang, Jing; Umeh, Uchenna O; Doan, Lisa V
PURPOSE/UNASSIGNED:The COVID-19 pandemic led to a drastic expansion in utilizing telemedicine, circumventing some of the geographical barriers to accessing pain care. However, uncertainties around the impact of telemedicine across various sociodemographic groups still exist, prompting further exploration. Therefore, this study aimed to evaluate the impact of sociodemographic factors in telemedicine utilization during and after the COVID-19 pandemic. PATIENTS AND METHODS/UNASSIGNED:All outpatient non-procedural visits at the pain medicine division of a large academic institution in the epicenter of the pandemic (New York, USA), between March 2019 and October 2021, were retrospectively included. Sociodemographic data including gender, age, ethnicity/race, postal code, and type of health insurance, across three time periods associated with the COVID-19 pandemic - pre-lockdown (in-office visits only), lockdown (telemedicine visits only) and post-lockdown (offering both in-office and telemedicine visits) - were analyzed and compared. RESULTS/UNASSIGNED:In total, 12,615 unique patients - The majority being women (58%) - were seen during the whole study period. In the post-lockdown period, telemedicine was utilized by 42% of all patients. Follow-up visits, younger patients, white patients, patients residing further away from the hospital, and privately insured patients were more likely to utilize telemedicine post-lockdown (p <0.05). Older patients, minorities, Manhattan residents, and Medicare/Medicaid recipients, were more likely to use in-office visits post-lockdown (p <0.05). CONCLUSION/UNASSIGNED:We identified disparities in the utilization of telemedicine in Pain Medicine, which may be due to socioeconomic factors such as lack of access to reliable internet access, cost of devices, and technological know-how. This emphasizes the need for further studies to better understand the reasons for and barriers to telemedicine use. This could help inform policymaking to safeguard equitable access to telemedicine use for pain care.
PMCID:10422968
PMID: 37577160
ISSN: 1178-7090
CID: 5599502
Blocking of microglia-astrocyte proinflammatory signaling is beneficial following stroke
Prescott, Kimberly; Münch, Alexandra E; Brahms, Evan; Weigel, Maya K; Inoue, Kenya; Buckwalter, Marion S; Liddelow, Shane A; Peterson, Todd C
Microglia and astrocytes play an important role in the neuroinflammatory response and contribute to both the destruction of neighboring tissue as well as the resolution of inflammation following stroke. These reactive glial cells are highly heterogeneous at both the transcriptomic and functional level. Depending upon the stimulus, microglia and astrocytes mount a complex, and specific response composed of distinct microglial and astrocyte substates. These substates ultimately drive the landscape of the initiation and recovery from the adverse stimulus. In one state, inflammation- and damage-induced microglia release tumor necrosis factor (TNF), interleukin 1α (IL1α), and complement component 1q (C1q), together "TIC." This cocktail of cytokines drives astrocytes into a neurotoxic reactive astrocyte (nRA) substate. This nRA substate is associated with loss of many physiological astrocyte functions (e.g., synapse formation and maturation, phagocytosis, among others), as well as a gain-of-function release of neurotoxic long-chain fatty acids which kill neighboring cells. Here we report that transgenic removal of TIC led to reduction of gliosis, infarct expansion, and worsened functional deficits in the acute and delayed stages following stroke. Our results suggest that TIC cytokines, and likely nRAs play an important role that may maintain neuroinflammation and inhibit functional motor recovery after ischemic stroke. This is the first report that this paradigm is relevant in stroke and that therapies against nRAs may be a novel means to treat patients. Since nRAs are evolutionarily conserved from rodents to humans and present in multiple neurodegenerative diseases and injuries, further identification of mechanistic role of nRAs will lead to a better understanding of the neuroinflammatory response and the development of new therapies.
PMCID:10794541
PMID: 38240014
ISSN: 1662-5099
CID: 5737502
Changes in alpha, theta, and gamma oscillations in distinct cortical areas are associated with altered acute pain responses in chronic low back pain patients
Kenefati, George; Rockholt, Mika M; Ok, Deborah; McCartin, Michael; Zhang, Qiaosheng; Sun, Guanghao; Maslinski, Julia; Wang, Aaron; Chen, Baldwin; Voigt, Erich P; Chen, Zhe Sage; Wang, Jing; Doan, Lisa V
INTRODUCTION/UNASSIGNED:Chronic pain negatively impacts a range of sensory and affective behaviors. Previous studies have shown that the presence of chronic pain not only causes hypersensitivity at the site of injury but may also be associated with pain-aversive experiences at anatomically unrelated sites. While animal studies have indicated that the cingulate and prefrontal cortices are involved in this generalized hyperalgesia, the mechanisms distinguishing increased sensitivity at the site of injury from a generalized site-nonspecific enhancement in the aversive response to nociceptive inputs are not well known. METHODS/UNASSIGNED: = 15) by analyzing behavioral and electroencephalographic (EEG) data. RESULTS/UNASSIGNED:As expected, participants with chronic pain endorsed enhanced pain with mechanical stimuli in both back and hand. We further analyzed electroencephalographic (EEG) recordings during these evoked pain episodes. Brain oscillations in theta and alpha bands in the medial orbitofrontal cortex (mOFC) were associated with localized hypersensitivity, while increased gamma oscillations in the anterior cingulate cortex (ACC) and increased theta oscillations in the dorsolateral prefrontal cortex (dlPFC) were associated with generalized hyperalgesia. DISCUSSION/UNASSIGNED:These findings indicate that chronic pain may disrupt multiple cortical circuits to impact nociceptive processing.
PMCID:10611481
PMID: 37901433
ISSN: 1662-4548
CID: 5606822
Effects of retinoic acid receptor α modulators on developmental ethanol-induced neurodegeneration and neuroinflammation
Saito, Mariko; Subbanna, Shivakumar; Zhang, Xiuli; Canals-Baker, Stefanie; Smiley, John F; Wilson, Donald A; Das, Bhaskar C
Ethanol exposure in neonatal mice induces acute neurodegeneration followed by long-lasting glial activation and GABAergic cell deficits along with behavioral abnormalities, providing a third trimester model of fetal alcohol spectrum disorders (FASD). Retinoic acid (RA), the active form of vitamin A, regulates transcription of RA-responsive genes and plays essential roles in the development of embryos and their CNS. Ethanol has been shown to disturb RA metabolism and signaling in the developing brain, which may be a cause of ethanol toxicity leading to FASD. Using an agonist and an antagonist specific to RA receptor α (RARα), we studied how RA/RARα signaling affects acute and long-lasting neurodegeneration and activation of phagocytic cells and astrocytes caused by ethanol administered to neonatal mice. We found that an RARα antagonist (BT382) administered 30 min before ethanol injection into postnatal day 7 (P7) mice partially blocked acute neurodegeneration as well as elevation of CD68-positive phagocytic cells in the same brain area. While an RARα agonist (BT75) did not affect acute neurodegeneration, BT75 given either before or after ethanol administration ameliorated long-lasting astrocyte activation and GABAergic cell deficits in certain brain regions. Our studies using Nkx2.1-Cre;Ai9 mice, in which major GABAergic neurons and their progenitors in the cortex and the hippocampus are labeled with constitutively expressed tdTomato fluorescent protein, indicate that the long-lasting GABAergic cell deficits are mainly caused by P7 ethanol-induced initial neurodegeneration. However, the partial reduction of prolonged GABAergic cell deficits and glial activation by post-ethanol BT75 treatment suggests that, in addition to the initial cell death, there may be delayed cell death or disturbed development of GABAergic cells, which is partially rescued by BT75. Since RARα agonists including BT75 have been shown to exert anti-inflammatory effects, BT75 may rescue GABAergic cell deficits by reducing glial activation/neuroinflammation.
PMCID:10187544
PMID: 37205047
ISSN: 1662-4548
CID: 5544362
A Tool to Integrate Electrophysiological Mapping for Cardiac Radioablation of Ventricular Tachycardia
Wang, Hesheng; Barbhaiya, Chirag R; Yuan, Ye; Barbee, David; Chen, Ting; Axel, Leon; Chinitz, Larry A; Evans, Andrew J; Byun, David J
PURPOSE/UNASSIGNED:Cardiac radioablation is an emerging therapy for recurrent ventricular tachycardia. Electrophysiology (EP) data, including electroanatomic maps (EAM) and electrocardiographic imaging (ECGI), provide crucial information for defining the arrhythmogenic target volume. The absence of standardized workflows and software tools to integrate the EP maps into a radiation planning system limits their use. This study developed a comprehensive software tool to enable efficient utilization of the mapping for cardiac radioablation treatment planning. METHODS AND MATERIALS/UNASSIGNED:After the scar area is outlined on the mapping surface, the tool extracts and extends the annotated patch into a closed surface and converts it into a structure set associated with the anatomic images. The tool then exports the structure set and the images as The Digital Imaging and Communications in Medicine Standard in Radiotherapy for a radiation treatment planning system to import. Overlapping the scar structure on simulation CT, a transmural target volume is delineated for treatment planning. RESULTS/UNASSIGNED:The tool has been used to transfer Ensite NavX EAM data into the Varian Eclipse treatment planning system in radioablation on 2 patients with ventricular tachycardia. The ECGI data from CardioInsight was retrospectively evaluated using the tool to derive the target volume for a patient with left ventricular assist device, showing volumetric matching with the clinically used target with a Dice coefficient of 0.71. CONCLUSIONS/UNASSIGNED:HeaRTmap smoothly fuses EP information from different mapping systems with simulation CT for accurate definition of radiation target volume. The efficient integration of EP data into treatment planning potentially facilitates the study and adoption of the technique.
PMCID:10320498
PMID: 37415904
ISSN: 2452-1094
CID: 5539402