Searched for: school:SOM
Department/Unit:Cell Biology
Evidence for phosphorylation of human parainfluenza virus type 3 C protein: mutant C proteins exhibit variable inhibitory activities in vitro
Malur, Achut G; Wells, Greg; McCoy, Almedia; Banerjee, Amiya K
The P mRNA of human parainfluenza virus type 3, like other members of the subfamily Paramyxovirinae, gives rise to several polypeptides, one amongst them, the C protein, which is involved in inhibition of viral RNA synthesis as well as counteracting the host interferon signaling pathway. As a further step towards characterizing the function of C protein we present evidence to demonstrate the phosphorylation of C protein. Evidence for this observation emerged from deletion mapping studies coupled with mass spectroscopy analysis confirming residues S7, S22, S47T48 and S81 residues as the phosphorylation sites within the NH(2)-terminus of C protein. Here, we utilized a HPIV 3 minigenome replication assay and real time RT-PCR analysis to measure the relative RNA levels synthesized in the presence of mutant C proteins. Mutants S7A and S81A displayed low levels of RNA while mutant 5A that was devoid of all these phosphorylation sites exhibited high RNA level in comparison to wild type C during transcription. Interestingly, high levels of RNA were observed in the presence of S81A and mutant 5A during replication. Taken together, our results indicate that phosphorylation may differentially affect the inhibitory activity of C protein thereby regulating viral RNA synthesis.
PMCID:2736354
PMID: 19410612
ISSN: 0168-1702
CID: 1444322
Age-dependent dysregulation of brain amyloid precursor protein in the Ts65Dn Down syndrome mouse model
Choi, Jennifer H K; Berger, Jason D; Mazzella, Matthew J; Morales-Corraliza, Jose; Cataldo, Anne M; Nixon, Ralph A; Ginsberg, Stephen D; Levy, Efrat; Mathews, Paul M
Individuals with Down syndrome develop beta-amyloid deposition characteristic of early-onset Alzheimer's disease (AD) in mid-life, presumably because of an extra copy of the chromosome 21-located amyloid precursor protein (App) gene. App mRNA and APP metabolite levels were assessed in the brains of Ts65Dn mice, a mouse model of Down syndrome, using quantitative PCR, western blot analysis, immunoprecipitation, and ELISAs. In spite of the additional App gene copy, App mRNA, APP holoprotein, and all APP metabolite levels in the brains of 4-month-old trisomic mice were not increased compared with the levels seen in diploid littermate controls. However starting at 10 months of age, brain APP levels were increased proportional to the App gene dosage imbalance reflecting increased App message levels in Ts65Dn mice. Similar to APP levels, soluble amino-terminal fragments of APP (sAPPalpha and sAPPbeta) were increased in Ts65Dn mice compared with diploid mice at 12 months but not at 4 months of age. Brain levels of both Abeta40 and Abeta42 were not increased in Ts65Dn mice compared with diploid mice at all ages examined. Therefore, multiple mechanisms contribute to the regulation towards diploid levels of APP metabolites in the Ts65Dn mouse brain
PMCID:2744432
PMID: 19619138
ISSN: 1471-4159
CID: 126493
Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion
Varnat, Frederic; Duquet, Arnaud; Malerba, Monica; Zbinden, Marie; Mas, Christophe; Gervaz, Pascal; Ruiz i Altaba, Ariel
Human colon cancers often start as benign adenomas through loss of APC, leading to enhanced beta CATENIN (beta CAT)/TCF function. These early lesions are efficiently managed but often progress to invasive carcinomas and incurable metastases through additional changes, the nature of which is unclear. We find that epithelial cells of human colon carcinomas (CCs) and their stem cells of all stages harbour an active HH-GLI pathway. Unexpectedly, they acquire a high HEDGEHOG-GLI (HH-GLI) signature coincident with the development of metastases. We show that the growth of CC xenografts, their recurrence and metastases require HH-GLI function, which induces a robust epithelial-to-mesenchymal transition (EMT). Moreover, using a novel tumour cell competition assay we show that the self-renewal of CC stem cells in vivo relies on HH-GLI activity. Our results indicate a key and essential role of the HH-GLI1 pathway in promoting CC growth, stem cell self-renewal and metastatic behavior in advanced cancers. Targeting HH-GLI1, directly or indirectly, is thus predicted to decrease tumour bulk and eradicate CC stem cells and metastases.
PMCID:3378144
PMID: 20049737
ISSN: 1757-4676
CID: 916022
Control of tight junctional sealing: roles of epidermal growth factor and prostaglandin E2
Flores-Benitez, D; Rincon-Heredia, R; Razgado, L F; Larre, I; Cereijido, M; Contreras, R G
Epithelia can adjust the permeability of the paracellular permeation route by regulating the degree of sealing of the tight junction. This is reflected by a transepithelial electrical resistance (TER) ranging from a few tenths to several thousand ohms times square centimeters, depending on the difference in composition between the fluid in the lumen and the interstitial fluid. Although teleologically sound, such correlation requires a physiological explanation. We have previously shown that urine extracts from different animal species increase the TER of Madin-Darby canine kidney (MDCK) monolayers and that these effects are mediated by epidermal growth factor (EGF) contained in the flowing intratubular fluid that eventually reaches the urine. This increase in TER is accompanied by an enhanced expression of claudin-4 (cln-4) and a decrement of cln-2. These changes are transient, peaking at approximately 16 h and returning to control values in approximately 24 h. In the present work we investigated how EGF provokes this transient response, and we found that the activation of extracellular-regulated kinases 1/2 (ERK1/2) by EGF is essential to increase TER and cln-4 content, but it does not appear to participate in cln-2 downregulation. On the other hand, prostaglandin synthesis, stimulated by EGF, functions as a negative feedback, turning off the signal initiated by EGF. Thus, PGE(2) blocks ERK1/2 by a mechanism that involves the G alpha(s) protein, adenylyl cyclase as well as protein kinase A in MDCK cells. In summary, the permeability of a given segment of the nephron depends on the expression of different claudin types, which may be modulated by EGF and prostaglandins.
PMID: 19570890
ISSN: 0363-6143
CID: 523212
Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia
Huang, Peng; Schier, Alexander F
Cilia have been implicated in Hedgehog (Hh) and Wnt signaling in mouse but not in Drosophila. To determine whether the role of cilia is conserved in zebrafish, we generated maternal-zygotic (MZ) oval (ovl; ift88) mutants that lack all cilia. MZovl mutants display normal canonical and non-canonical Wnt signaling but show defects in Hh signaling. As in mouse, zebrafish cilia are required to mediate the activities of Hh, Ptc, Smo and PKA. However, in contrast to mouse Ift88 mutants, which show a dramatic reduction in Hh signaling, zebrafish MZovl mutants display dampened, but expanded, Hh pathway activity. This activity is largely due to gli1, the expression of which is fully dependent on Hh signaling in mouse but not in zebrafish. These results reveal a conserved requirement for cilia in transducing the activity of upstream regulators of Hh signaling but distinct phenotypic effects due to differential regulation and differing roles of transcriptional mediators.
PMCID:2730366
PMID: 19700616
ISSN: 0950-1991
CID: 877002
A functional antagonism between the pgc germline repressor and torso in the development of somatic cells
de Las Heras, Jose Manuel; Martinho, Rui Goncalo; Lehmann, Ruth; Casanova, Jordi
Segregation of the germline is a fundamental event during early development. In Drosophila, germ cells are specified at the posterior pole of the embryo by the germplasm. As zygotic expression is activated, germ cells remain transcriptionally silent owing to the polar granule component (Pgc), a small peptide present in germ cells. Somatic cells at both the embryonic ends are specified by the torso (Tor) receptor tyrosine kinase, and in tor mutants the somatic cells closer to the germ cells fail to cellularize correctly. Here, we show that extra wild-type gene copies of pgc cause a similar cellularization phenotype, and that both excessive pgc and a lack of tor are associated with an impairment of transcription in somatic cells. Moreover, a lack of pgc partly ameliorates the cellularization defect of tor mutants, thus revealing a functional antagonism between pgc and tor in the specification of germline and somatic properties. As transcriptional quiescence is a general feature of germ cells, similar mechanisms might operate in many organisms to 'protect' somatic cells that adjoin germ cells from inappropriately succumbing to such quiescence
PMCID:2750056
PMID: 19644502
ISSN: 1469-3178
CID: 113783
National Cholesterol Month [Editorial]
Fisher, EA
ISI:000269098200001
ISSN: 1079-5642
CID: 101946
Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-beta-D-glucan synthase: implication for the existing susceptibility breakpoint
Garcia-Effron, Guillermo; Lee, Samuel; Park, Steven; Cleary, John D; Perlin, David S
Thirteen Candida glabrata strains harboring a range of mutations in hot spot regions of FKS1 and FKS2 were studied. The mutations were linked to an echinocandin reduced susceptibility phenotype. Sequence alignments showed that 11 out of the 13 mutants harbored a mutation in FKS1 or FKS2 not previously implicated in echinocandin reduced susceptibility in C. glabrata. A detailed kinetic characterization demonstrated that amino acid substitutions in Fks1p and Fks2p reduced drug sensitivity in mutant 1,3-beta-D-glucan synthase by 2 to 3 log orders relative to that in wild-type enzyme. These mutations were also found to reduce the catalytic efficiency of the enzyme (Vmax) and to influence the relative expression of FKS genes. In view of the association of FKS mutations and reduced susceptibility of 1,3-beta-D-glucan synthase, an evaluation of the new CLSI echinocandin susceptibility breakpoint was conducted. Only 3 of 13 resistant fks mutants (23%) were considered anidulafungin or micafungin nonsusceptible (MIC > 2 microg/ml) by this criterion. In contrast, most fks mutants (92%) exceeded a MIC of >2 microg/ml with caspofungin. However, when MIC determinations were performed in the presence of 50% serum, all C. glabrata fks mutants showed MICs of > or = 2 microg/ml for the three echinocandin drugs. As has been observed with Candida albicans, the kinetic inhibition parameter 50% inhibitory concentration may be a better predictor of FKS-mediated resistance. Finally, the close association between FKS1/FKS2 hot spot mutations provides a basis for understanding echinocandin resistance in C. glabrata.
PMCID:2737881
PMID: 19546367
ISSN: 0066-4804
CID: 310032
Olfactory Perceptual Correlates of b-Amyloid Plaque Burden in Alzheimer's Disease Mouse Models [Meeting Abstract]
Wesson, DW; Levy, E; Nixon, RA; Wilson, DA
ISI:000269196800089
ISSN: 0379-864X
CID: 101941
A sideway glance: a new role for endoplasmic reticulum chemical chaperones as leptin sensitizers
Gaetani, Sancia
PMCID:2745750
PMID: 19727887
ISSN: 1555-8932
CID: 1368412