Searched for: school:SOM
Department/Unit:Cell Biology
Electric pulses used in electrochemotherapy and electrogene therapy do not significantly change the expression profile of genes involved in the development of cancer in malignant melanoma cells
Mlakar, Vid; Todorovic, Vesna; Cemazar, Maja; Glavac, Damjan; Sersa, Gregor
BACKGROUND: Electroporation is a versatile method for in vitro or in vivo delivery of different molecules into cells. However, no study so far has analysed the effects of electric pulses used in electrochemotherapy (ECT pulses) or electric pulses used in electrogene therapy (EGT pulses) on malignant cells. We studied the effect of ECT and EGT pulses on human malignant melanoma cells in vitro in order to understand and predict the possible effect of electric pulses on gene expression and their possible effect on cell behaviour. METHODS: We used microarrays with 2698 different oligonucleotides to obtain the expression profile of genes involved in apoptosis and cancer development in a malignant melanoma cell line (SK-MEL28) exposed to ECT pulses and EGT pulses. RESULTS: Cells exposed to ECT pulses showed a 68.8% average survival rate, while cells exposed to EGT pulses showed a 31.4% average survival rate. Only seven common genes were found differentially expressed in cells 16 h after exposure to ECT and EGT pulses. We found that ECT and EGT pulses induce an HSP70 stress response mechanism, repress histone protein H4, a major protein involved in chromatin assembly, and down-regulate components involved in protein synthesis. CONCLUSION: Our results show that electroporation does not significantly change the expression profile of major tumour suppressor genes or oncogenes of the cell cycle. Moreover, electroporation also does not changes the expression of genes involved in the stability of DNA, supporting current evidence that electroporation is a safe method that does not promote tumorigenesis. However, in spite of being considered an isothermal method, it does to some extent induce stress, which resulted in the expression of the environmental stress response mechanism, HSP70
PMCID:2745430
PMID: 19709437
ISSN: 1471-2407
CID: 120526
Akt1 is critical for acute inflammation and histamine-mediated vascular leakage
Di Lorenzo, Annarita; Fernandez-Hernando, Carlos; Cirino, Giuseppe; Sessa, William C
Akt1 is implicated in cell metabolism, survival migration, and gene expression; however, little is known about the role of specific Akt isoforms during inflammation in vivo. Thus, we directly explored the roles of the isoforms Akt1 and Akt2 in acute inflammation models by using mice deficient in either Akt1 or Akt2. Akt1(-/-) mice showed a markedly reduced edema versus Akt2(-/-) and WT controls, and the reduced inflammation was associated with a dramatic decrease in neutrophil and monocyte infiltration. The loss of Akt1 did not affect leukocyte functions in vitro, and bone marrow transplant experiments suggest that host Akt1 regulates leukocyte emigration into inflamed tissues. Moreover, carrageenan-induced edema and the direct propermeability actions of bradykinin and histamine were reduced dramatically in Akt1(-/-) versus WT mice. These findings are supported by in vitro experiments showing that Akt1 deficiency or blockade of nitric oxide synthase markedly reduces histamine-stimulated changes in transendothelial electrical resistance of microvascular endothelial cells. Collectively, these results suggest that Akt1 is necessary for acute inflammation and exerts its actions primarily via regulation of vascular permeability, leading to edema and leukocyte extravasation
PMCID:2732859
PMID: 19622728
ISSN: 1091-6490
CID: 103239
Evidence for an early prokaryotic endosymbiosis
Lake, James A
Endosymbioses have dramatically altered eukaryotic life, but are thought to have negligibly affected prokaryotic evolution. Here, by analysing the flows of protein families, I present evidence that the double-membrane, gram-negative prokaryotes were formed as the result of a symbiosis between an ancient actinobacterium and an ancient clostridium. The resulting taxon has been extraordinarily successful, and has profoundly altered the evolution of life by providing endosymbionts necessary for the emergence of eukaryotes and by generating Earth's oxygen atmosphere. Their double-membrane architecture and the observed genome flows into them suggest a common evolutionary mechanism for their origin: an endosymbiosis between a clostridium and actinobacterium.
PMID: 19693078
ISSN: 0028-0836
CID: 281902
Hes1 potentiates T cell lymphomagenesis by up-regulating a subset of notch target genes
Dudley, Darryll D; Wang, Hong-Cheng; Sun, Xiao-Hong
BACKGROUND: Hairy/Enhancer of Split (Hes) proteins are targets of the Notch signaling pathway and make up a class of basic helix-loop-helix (bHLH) proteins that function to repress transcription. Data from Hes1 deficient mice suggested that Hes1, like Notch1, is necessary for the progression of early T cell progenitors. Constitutive activation of Notch is known to cause T cell leukemia or lymphoma but whether Hes1 has any oncogenic activity is not known. METHODOLOGY/PRINCIPAL FINDINGS: We generated mice carrying a Hes1 transgene under control of the proximal promote of the lck gene. Hes1 expression led to a reduction in numbers of total thymocytes, concomitant with the increased percentage and number of immature CD8+ (ISP) T cells and sustained CD25 expression in CD4+CD8+ double positive (DP) thymocytes. Hes1 transgenic mice develop thymic lymphomas at about 20 weeks of age with a low penetrance. However, expression of Hes1 significantly shortens the latency of T cell lymphoma developed in Id1 transgenic mice, where the function of bHLH E proteins is inhibited. Interestingly, Hes1 increased expression of a subset of Notch target genes in pre-malignant ISP and DP thymocytes, which include Notch1, Notch3 and c-myc, thus suggesting a possible mechanism for lymphomagenesis. CONCLUSIONS/SIGNIFICANCE: We have demonstrated for the first time that Hes1 potentiates T cell lymphomagenesis, by up-regulating a subset of Notch target genes and by causing an accumulation of ISP thymocytes particularly vulnerable to oncogenic transformation.
PMCID:2722736
PMID: 19688092
ISSN: 1932-6203
CID: 830412
Genome beginnings: rooting the tree of life
Lake, James A; Skophammer, Ryan G; Herbold, Craig W; Servin, Jacqueline A
A rooted tree of life provides a framework to answer central questions about the evolution of life. Here we review progress on rooting the tree of life and introduce a new root of life obtained through the analysis of indels, insertions and deletions, found within paralogous gene sets. Through the analysis of indels in eight paralogous gene sets, the root is localized to the branch between the clade consisting of the Actinobacteria and the double-membrane (Gram-negative) prokaryotes and one consisting of the archaebacteria and the firmicutes. This root provides a new perspective on the habitats of early life, including the evolution of methanogenesis, membranes and hyperthermophily, and the speciation of major prokaryotic taxa. Our analyses exclude methanogenesis as a primitive metabolism, in contrast to previous findings. They parsimoniously imply that the ether archaebacterial lipids are not primitive and that the cenancestral prokaryotic population consisted of organisms enclosed by a single, ester-linked lipid membrane, covered by a peptidoglycan layer. These results explain the similarities previously noted by others between the lipid synthesis pathways in eubacteria and archaebacteria. The new root also implies that the last common ancestor was not hyperthermophilic, although moderate thermophily cannot be excluded.
PMCID:2873003
PMID: 19571238
ISSN: 0962-8436
CID: 281912
The network of life: genome beginnings and evolution. Introduction
Ragan, Mark A; McInerney, James O; Lake, James A
PMCID:2874017
PMID: 19571237
ISSN: 0962-8436
CID: 281922
The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues
Thangarajah, Hariharan; Yao, Dachun; Chang, Edward I; Shi, Yubin; Jazayeri, Leila; Vial, Ivan N; Galiano, Robert D; Du, Xue-Liang; Grogan, Raymon; Galvez, Michael G; Januszyk, Michael; Brownlee, Michael; Gurtner, Geoffrey C
Diabetes is associated with poor outcomes following acute vascular occlusive events. This results in part from a failure to form adequate compensatory microvasculature in response to ischemia. Since vascular endothelial growth factor (VEGF) is an essential mediator of neovascularization, we examined whether hypoxic up-regulation of VEGF was impaired in diabetes. Both fibroblasts isolated from type 2 diabetic patients, and normal fibroblasts exposed chronically to high glucose, were defective in their capacity to up-regulate VEGF in response to hypoxia. In vivo, diabetic animals demonstrated an impaired ability to increase VEGF production in response to soft tissue ischemia. This resulted from a high glucose-induced decrease in transactivation by the transcription factor hypoxia-inducible factor-1alpha (HIF-1alpha), which mediates hypoxia-stimulated VEGF expression. Decreased HIF-1alpha functional activity was specifically caused by impaired HIF-1alpha binding to the coactivator p300. We identify covalent modification of p300 by the dicarbonyl metabolite methylglyoxal as being responsible for this decreased association. Administration of deferoxamine abrogated methylglyoxal conjugation, normalizing both HIF-1alpha/p300 interaction and transactivation by HIF-1alpha. In diabetic mice, deferoxamine promoted neovascularization and enhanced wound healing. These findings define molecular defects that underlie impaired VEGF production in diabetic tissues and offer a promising direction for therapeutic intervention.
PMCID:2726398
PMID: 19666581
ISSN: 1091-6490
CID: 2033232
Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells
Zhao, Yong; Sfeir, Agnel J; Zou, Ying; Buseman, Christen M; Chow, Tracy T; Shay, Jerry W; Wright, Woodring E
Telomeres are thought to be maintained by the preferential recruitment of telomerase to the shortest telomeres. The extension of the G-rich telomeric strand by telomerase is also believed to be coordinated with the complementary synthesis of the C strand by the conventional replication machinery. However, we show that under telomere length-maintenance conditions in cancer cells, human telomerase extends most chromosome ends during each S phase and is not preferentially recruited to the shortest telomeres. Telomerase rapidly extends the G-rich strand following telomere replication but fill-in of the C strand is delayed into late S phase. This late C-strand fill-in is not executed by conventional Okazaki fragment synthesis but by a mechanism using a series of small incremental steps. These findings highlight differences between telomerase actions during steady state versus nonequilibrium conditions and reveal steps in the human telomere maintenance pathway that may provide additional targets for the development of anti-telomerase therapeutics
PMCID:2726829
PMID: 19665970
ISSN: 1097-4172
CID: 149048
F-spondin, a neuroregulatory protein, is up-regulated in osteoarthritis and regulates cartilage metabolism via TGF-beta activation (vol 23, pg 79, 2009) [Correction]
Attur, M. G.; Palmer, G. D.; Al-Mussawir, H. E.; Dave, M.; Teixeira, C. C.; Rifkin, D. B.; Appleton, C. T. G.; Beier, F.; Abramson, S. B.
ISI:000268836700050
ISSN: 0892-6638
CID: 2949202
A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition
Vincent, Theresa; Neve, Etienne P A; Johnson, Jill R; Kukalev, Alexander; Rojo, Federico; Albanell, Joan; Pietras, Kristian; Virtanen, Ismo; Philipson, Lennart; Leopold, Philip L; Crystal, Ronald G; de Herreros, Antonio Garcia; Moustakas, Aristidis; Pettersson, Ralf F; Fuxe, Jonas
Epithelial-mesenchymal transition (EMT) is essential for organogenesis and is triggered during carcinoma progression to an invasive state. Transforming growth factor-beta (TGF-beta) cooperates with signalling pathways, such as Ras and Wnt, to induce EMT, but the molecular mechanisms are not clear. Here, we report that SMAD3 and SMAD4 interact and form a complex with SNAIL1, a transcriptional repressor and promoter of EMT. The SNAIL1-SMAD3/4 complex was targeted to the gene promoters of CAR, a tight-junction protein, and E-cadherin during TGF-beta-driven EMT in breast epithelial cells. SNAIL1 and SMAD3/4 acted as co-repressors of CAR, occludin, claudin-3 and E-cadherin promoters in transfected cells. Conversely, co-silencing of SNAIL1 and SMAD4 by siRNA inhibited repression of CAR and occludin during EMT. Moreover, loss of CAR and E-cadherin correlated with nuclear co-expression of SNAIL1 and SMAD3/4 in a mouse model of breast carcinoma and at the invasive fronts of human breast cancer. We propose that activation of a SNAIL1-SMAD3/4 transcriptional complex represents a mechanism of gene repression during EMT
PMCID:3769970
PMID: 19597490
ISSN: 1476-4679
CID: 134685