Searched for: school:SOM
Department/Unit:Cell Biology
Absence of Akt1 Reduces Vascular Smooth Muscle Cell Migration and Survival and Induces Features of Plaque Vulnerability and Cardiac Dysfunction During Atherosclerosis
Fernandez-Hernando, Carlos; Jozsef, Levente; Jenkins, Deborah; Di Lorenzo, Annarita; Sessa, William C
OBJECTIVE: Deletion of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease. Vascular smooth muscle cells (VSMCs) are an important component of atherosclerotic plaques, responsible for promoting plaque stability in advanced lesions. Fibrous caps of unstable plaques contain less collagen and ECM components and fewer VSMCs than caps from stable lesions. Here, we investigated the role of Akt1 in VSMC proliferation, migration, and oxidative stress-induced apoptosis. In addition, we also characterized the atherosclerotic plaque morphology and cardiac function in an atherosclerosis-prone mouse model deficient in Akt1. METHODS AND RESULTS: Absence of Akt1 reduces VSMC proliferation and migration. Mechanistically, the proliferation and migratory phenotype found in Akt1-null VSMCs was linked to reduced Rac-1 activity and MMP-2 secretion. Serum starvation and stress-induced apoptosis was enhanced in Akt1 null VSMCs as determined by flow cytometry using Annexin V/PI staining. Immunohistochemical analysis of atherosclerotic plaques from Akt1(-)(/)(-ApoE)(-)(/)(-) mice showed a dramatic increase in plaque vulnerability characteristics such as enlarged necrotic core and reduced fibrous cap and collagen content. Finally, we show evidence of myocardial infarcts and cardiac dysfunction in Akt1(-)(/)(-ApoE)(-)(/)(-) mice analyzed by immunohistochemistry and echocardiography, respectively. CONCLUSIONS: Akt1 is essential for VSMC proliferation, migration, and protection against oxidative stress-induced apoptosis. Absence of Akt1 induces features of plaque vulnerability and cardiac dysfunction in a mouse model of atherosclerosis
PMCID:2796372
PMID: 19762778
ISSN: 1524-4636
CID: 103243
Levels of expression for BMP-7 and several BMP antagonists may play an integral role in a fracture nonunion: a pilot study
Fajardo, Marc; Liu, Chuan-Ju; Egol, Kenneth
Delays in bone healing or even the development of a nonunion could be related to the concentrations and/or functions of the bone morphogenetic proteins (BMPs). The RNA expression profile of the BMPs within fracture nonunion tissue is unknown. This preliminary descriptive study was performed to define the RNA profiles of the BMPs, their receptors, and their inhibitors within human fracture nonunion tissue and correlate them to matched healing bone. All patients had hypertrophic nonunions. Tissue samples taken from the nonunion site of 15 patients undergoing surgical treatment for an established nonunion were analyzed. The RNA expression patterns of BMP-2, BMP-4, BMP-5, BMP-6, BMP-7, BMP-8; BMP receptor Types IA, IB, and II; and the BMP inhibitors chordin, Noggin, Drm (Gremlin), and follistatin were determined in the nonunion (fibrous tissue) and healing bone (callus tissue) using quantitative real-time PCR. Comparison between the nonunion and healing bone samples revealed substantially elevated concentrations of BMP-4, Drm/Gremlin, follistatin, and Noggin in nonunion tissue when compared to healing bone. In contrast, BMP-7 concentration was higher in the healing bone. Our data suggest inhibition of BMP-7, by Drm (Gremlin), follistatin, and Noggin and upregulation of BMP-4 may play an integral role in the development of nonunions
PMCID:2772945
PMID: 19597895
ISSN: 1528-1132
CID: 105162
Gadd45 proteins as critical signal transducers linking NF-kappaB to MAPK cascades
Yang, Z; Song, L; Huang, C
The growth arrest and DNA damage-inducible 45 (Gadd45) proteins are a group of critical signal transducers that are involved in regulations of many cellular functions. Accumulated data indicate that all three Gadd45 proteins (i.e., Gadd45alpha, Gadd45beta, and Gadd45gamma) play essential roles in connecting an upstream sensor module, the transcription Nuclear Factor-kappaB (NF-kappaB), to a transcriptional regulating module, mitogen-activated protein kinase (MAPK). This NF-kappaB-Gadd45(s)-MAPK pathway responds to various kinds of extracellular stimuli and regulates such cell activities as growth arrest, differentiation, cell survival, and apoptosis. Defects in this pathway can also be related to oncogenesis. In the first part of this review, the functions of Gadd45 proteins, and briefly NF-kappaB and MAPK, are summarized. In the second part, the mechanisms by which Gadd45 proteins are regulated by NF-kappaB, and how they affect MAPK activation, are reviewed
PMCID:3762688
PMID: 20025601
ISSN: 1873-5576
CID: 105986
Drosophila lysophospholipid acyltransferases are specifically required for germ cell development
Steinhauer, Josefa; Gijon, Miguel A; Riekhof, Wayne R; Voelker, Dennis R; Murphy, Robert C; Treisman, Jessica E
Enzymes of the membrane-bound O-acyltransferase (MBOAT) family add fatty acyl chains to a diverse range of protein and lipid substrates. A chromosomal translocation disrupting human MBOAT1 results in a novel syndrome characterized by male sterility and brachydactyly. We have found that the Drosophila homologues of MBOAT1, Oysgedart (Oys), Nessy (Nes), and Farjavit (Frj), are lysophospholipid acyltransferases. When expressed in yeast, these MBOATs esterify specific lysophospholipids preferentially with unsaturated fatty acids. Generating null mutations for each gene allowed us to identify redundant functions for Oys and Nes in two distinct aspects of Drosophila germ cell development. Embryos lacking both oys and nes show defects in the ability of germ cells to migrate into the mesoderm, a process guided by lipid signals. In addition, oys nes double mutant adult males are sterile due to specific defects in spermatid individualization. oys nes mutant testes, as well as single, double, and triple mutant whole adult animals, show an increase in the saturated fatty acid content of several phospholipid species. Our findings suggest that lysophospholipid acyltransferase activity is essential for germline development and could provide a mechanistic explanation for the etiology of the human MBOAT1 mutation
PMCID:2793297
PMID: 19864461
ISSN: 1939-4586
CID: 105963
Comparative healing of surgical incisions created by the PEAK PlasmaBlade, conventional electrosurgery, and a scalpel
Loh, Shang A; Carlson, Grace A; Chang, Edward I; Huang, Eric; Palanker, Daniel; Gurtner, Geoffrey C
BACKGROUND: The PEAK PlasmaBlade is a new electrosurgical device that uses pulsed radiofrequency to generate a plasma-mediated discharge along the exposed rim of an insulated blade, creating an effective cutting edge while the blade stays near body temperature. METHODS: Full-thickness incisions were made on the dorsums of pigs with the PlasmaBlade, a conventional electrosurgical device, and a scalpel, and blood loss was quantified. Wounds were harvested at designated time points, tested for wound tensile strength, and examined histologically for scar formation and tissue damage. RESULTS: Bleeding was reduced significantly (59 percent) in PlasmaBlade incisions compared with scalpel incisions, and acute thermal damage from the PlasmaBlade (66 +/- 5 microm) was significantly less than both cut and coagulation mode electrosurgical incisions (456 +/- 35 microm and 615 +/- 22 microm, respectively). Histologic scoring for injury and wound strength was equivalent between the PlasmaBlade and scalpel incisions. By 6 weeks, the healed PlasmaBlade and scalpel incisions were approximately three times stronger, and scar cosmetic appearance was significantly better compared with electrosurgical incisions. CONCLUSIONS: The PlasmaBlade is a promising new surgical instrument that provides atraumatic, scalpel-like cutting precision and electrosurgical-like hemostasis, resulting in minimal bleeding, tissue injury, and scar formation.
PMID: 19952641
ISSN: 1529-4242
CID: 2033222
Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis
Yu, Ming; Riva, Laura; Xie, Huafeng; Schindler, Yocheved; Moran, Tyler B; Cheng, Yong; Yu, Duonan; Hardison, Ross; Weiss, Mitchell J; Orkin, Stuart H; Bernstein, Bradley E; Fraenkel, Ernest; Cantor, Alan B
The transcription factor GATA-1 is required for terminal erythroid maturation and functions as an activator or repressor depending on gene context. Yet its in vivo site selectivity and ability to distinguish between activated versus repressed genes remain incompletely understood. In this study, we performed GATA-1 ChIP-seq in erythroid cells and compared it to GATA-1-induced gene expression changes. Bound and differentially expressed genes contain a greater number of GATA-binding motifs, a higher frequency of palindromic GATA sites, and closer occupancy to the transcriptional start site versus nondifferentially expressed genes. Moreover, we show that the transcription factor Zbtb7a occupies GATA-1-bound regions of some direct GATA-1 target genes, that the presence of SCL/TAL1 helps distinguish transcriptional activation versus repression, and that polycomb repressive complex 2 (PRC2) is involved in epigenetic silencing of a subset of GATA-1-repressed genes. These data provide insights into GATA-1-mediated gene regulation in vivo.
PMCID:2800995
PMID: 19941827
ISSN: 1097-2765
CID: 379622
Proneurotrophin-3 is a neuronal apoptotic ligand: evidence for retrograde-directed cell killing
Yano, Hiroko; Torkin, Risa; Martin, Laura Andres; Chao, Moses V; Teng, Kenneth K
Although mature neurotrophins are well described trophic factors that elicit retrograde survival signaling, the precursor forms of neurotrophins (i.e., proneurotrophins) can function as high-affinity apoptotic ligands for selected neural populations. An outstanding question is whether target-derived proneurotrophins might affect neuronal survival/death decisions through a retrograde transport mechanism. Since neurotrophin-3 (NT-3) is highly expressed in non-neural tissues that receive peripheral innervation, we investigated the localized actions of its precursor (proNT-3) on sympathetic neurons in the present study. Pharmacological inhibition of intracellular furin proteinase activity in 293T cells resulted in proNT-3 release instead of mature NT-3, whereas membrane depolarization in cerebellar granule neurons stimulated endogenous proNT-3 secretion, suggesting that proNT-3 is an inducible bona fide ligand in the nervous system. Our data also indicate that recombinant proNT-3 induced sympathetic neuron death that is p75(NTR)- and sortilin-dependent, with hallmark features of apoptosis including JNK (c-Jun N-terminal kinase) activation and nuclear fragmentation. Using compartmentalized culture systems that segregate neuronal cell bodies from axons, proNT-3, acting within the distal axon compartment, elicited sympathetic neuron death and overrode the survival-promoting actions of NGF. Together, these results raise the intriguing possibility that dysregulation of proneurotrophin processing/release by innervated targets can be deleterious to the neurons projecting to these sites
PMCID:2824605
PMID: 19940174
ISSN: 1529-2401
CID: 105519
Defective respiratory rhythmogenesis and loss of central chemosensitivity in Phox2b mutants targeting retrotrapezoid nucleus neurons
Dubreuil, Véronique; Thoby-Brisson, Muriel; Rallu, Murielle; Persson, Karin; Pattyn, Alexandre; Birchmeier, Carmen; Brunet, Jean-François; Fortin, Gilles; Goridis, Christo
The retrotrapezoid nucleus (RTN) is a group of neurons in the rostral medulla, defined here as Phox2b-, Vglut2-, neurokinin1 receptor-, and Atoh1-expressing cells in the parafacial region, which have been proposed to function both as generators of respiratory rhythm and as central respiratory chemoreceptors. The present study was undertaken to assess these two putative functions using genetic tools. We generated two conditional Phox2b mutations, which target different subsets of Phox2b-expressing cells, but have in common a massive depletion of RTN neurons. In both conditional mutants as well as in the previously described Phox2b(27Ala) mutants, in which the RTN is also compromised, the respiratory-like rhythmic activity normally seen in the parafacial region of fetal brainstem preparations was completely abrogated. Rhythmic motor bursts were recorded from the phrenic nerve roots in the mutants, but their frequency was markedly reduced. Both the rhythmic activity in the RTN region and the phrenic nerve discharges responded to a low pH challenge in control, but not in the mutant embryos. Together, our results provide genetic evidence for the essential role of the Phox2b-expressing RTN neurons both in establishing a normal respiratory rhythm before birth and in providing chemosensory drive.
PMCID:6665996
PMID: 19940179
ISSN: 1529-2401
CID: 4350702
The receptor protein tyrosine phosphatase LAR promotes R7 photoreceptor axon targeting by a phosphatase-independent signaling mechanism
Hofmeyer, Kerstin; Treisman, Jessica E
Receptor protein tyrosine phosphatases (RPTPs) control many aspects of nervous system development. At the Drosophila neuromuscular junction (NMJ), regulation of synapse growth and maturation by the RPTP LAR depends on catalytic phosphatase activity and on the extracellular ligands Syndecan and Dally-like. We show here that the function of LAR in controlling R7 photoreceptor axon targeting in the visual system differs in several respects. The extracellular domain of LAR important for this process is distinct from the domains known to bind Syndecan and Dally-like, suggesting the involvement of a different ligand. R7 targeting does not require LAR phosphatase activity, but instead depends on the phosphatase activity of another RPTP, PTP69D. In addition, a mutation that prevents dimerization of the intracellular domain of LAR interferes with its ability to promote R7 targeting, although it does not disrupt phosphatase activity or neuromuscular synapse growth. We propose that LAR function in R7 is independent of its phosphatase activity, but requires structural features that allow dimerization and may promote the assembly of downstream effectors
PMCID:2780745
PMID: 19889974
ISSN: 1091-6490
CID: 105364
N-cadherin mediates interaction between precursor cells in the subventricular zone and regulates further differentiation
Yagita, Yoshiki; Sakurai, Takeshi; Tanaka, Hidekazu; Kitagawa, Kazuo; Colman, David R; Shan, Weisong
Neurogenesis and cell differentiation in the brain continues throughout life. In the subventricular zone and rostral migratory stream, precursor cells contact each other. Cell-cell interactions mediated via adhesion molecules are no doubt involved in establishing and maintaining the neurogenic ability of these cells. Here, we demonstrate that N-cadherin plays important roles in forming cell clusters and in regulating cell differentiation. N-cadherin is abundantly expressed in chain migrating cells in the subventricular zone and rostral migratory stream but is down-regulated after cells exit these regions. We also show that neurosphere formation is inhibited via suppression of N-cadherin function and that N-cadherin expression is decreased after induction of neurosphere differentiation. Furthermore, we demonstrate that functional blockade of N-cadherin can enhance glial cell differentiation in explant cultures of precursors from the subventricular zone.
PMID: 19301425
ISSN: 0360-4012
CID: 605752