Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14178


Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-beta-D-glucan synthase: implication for the existing susceptibility breakpoint

Garcia-Effron, Guillermo; Lee, Samuel; Park, Steven; Cleary, John D; Perlin, David S
Thirteen Candida glabrata strains harboring a range of mutations in hot spot regions of FKS1 and FKS2 were studied. The mutations were linked to an echinocandin reduced susceptibility phenotype. Sequence alignments showed that 11 out of the 13 mutants harbored a mutation in FKS1 or FKS2 not previously implicated in echinocandin reduced susceptibility in C. glabrata. A detailed kinetic characterization demonstrated that amino acid substitutions in Fks1p and Fks2p reduced drug sensitivity in mutant 1,3-beta-D-glucan synthase by 2 to 3 log orders relative to that in wild-type enzyme. These mutations were also found to reduce the catalytic efficiency of the enzyme (Vmax) and to influence the relative expression of FKS genes. In view of the association of FKS mutations and reduced susceptibility of 1,3-beta-D-glucan synthase, an evaluation of the new CLSI echinocandin susceptibility breakpoint was conducted. Only 3 of 13 resistant fks mutants (23%) were considered anidulafungin or micafungin nonsusceptible (MIC > 2 microg/ml) by this criterion. In contrast, most fks mutants (92%) exceeded a MIC of >2 microg/ml with caspofungin. However, when MIC determinations were performed in the presence of 50% serum, all C. glabrata fks mutants showed MICs of > or = 2 microg/ml for the three echinocandin drugs. As has been observed with Candida albicans, the kinetic inhibition parameter 50% inhibitory concentration may be a better predictor of FKS-mediated resistance. Finally, the close association between FKS1/FKS2 hot spot mutations provides a basis for understanding echinocandin resistance in C. glabrata.
PMCID:2737881
PMID: 19546367
ISSN: 0066-4804
CID: 310032

In vivo MRI identifies cholinergic circuitry deficits in a Down syndrome model

Chen, Yuanxin; Dyakin, Victor V; Branch, Craig A; Ardekani, Babak; Yang, Dunsheng; Guilfoyle, David N; Peterson, Jesse; Peterhoff, Corrinne; Ginsberg, Stephen D; Cataldo, Anne M; Nixon, Ralph A
In vivo quantitative magnetic resonance imaging (MRI) was employed to detect brain pathology and map its distribution within control, disomic mice (2N) and in Ts65Dn and Ts1Cje trisomy mice with features of human Down syndrome (DS). In Ts65Dn, but not Ts1Cje mice, transverse proton spin-spin (T(2)) relaxation time was selectively reduced in the medial septal nucleus (MSN) and in brain regions that receive cholinergic innervation from the MSN, including the hippocampus, cingulate cortex, and retrosplenial cortex. Basal forebrain cholinergic neurons (BFCNs) in the MSN, identified by choline acetyltransferase (ChAT) and nerve growth factor receptors p75(NTR) and TrkA immunolabeling were reduced in Ts65Dn brains and in situ acetylcholinesterase (AChE) activity was depleted distally along projecting cholinergic fibers, and selectively on pre- and postsynaptic profiles in these target areas. T(2) effects were negligible in Ts1Cje mice that are diploid for App and lack BFCN neuropathology, consistent with the suspected relationship of this pathology to increased App dosage. These results establish the utility of quantitative MRI in vivo for identifying Alzheimer's disease-relevant cholinergic changes in animal models of DS and characterizing the selective vulnerability of cholinergic neuron subpopulations
PMCID:2771203
PMID: 18180075
ISSN: 1558-1497
CID: 86660

Id1 attenuates Notch signaling and impairs T-cell commitment by elevating Deltex1 expression

Wang, Hong-Cheng; Perry, S Scott; Sun, Xiao-Hong
Complete inhibition of E protein transcription factors by Id1 blocks the developmental transition of CD4/CD8 double-negative 1 (DN1; CD44(+) CD25(-)) thymocytes to the DN2 (CD44(+) CD25(+)) stage. To understand the underlying mechanisms, we observed that mRNA levels of Deltex1, as well as Deltex4, were dramatically elevated in Id1-expressing thymocytes, which could result in developmental arrest by attenuating Notch function. In support of this hypothesis, we found that Deltex1 ablation enabled Id1-expressing progenitors to differentiate to the DN3 (CD44(-) CD25(+)) stage, which was accompanied by enhanced Notch1 expression in T-cell progenitors. Consistently, constitutive activation of Notch1 drove the differentiation of Id1-expressing progenitors to the DN3 stage. Furthermore, we showed that Gfi1b levels decreased, whereas GATA3 levels increased in Id1 transgenic thymocytes. When overexpressed, GATA3 was able to upregulate Deltex1 transcription. Thus, T-cell commitment may be controlled by the interplay among E proteins, Gfi1b, and GATA3 transcription regulators, which influence Notch function through the expression of Deltex1.
PMCID:2725715
PMID: 19564409
ISSN: 0270-7306
CID: 830402

Spongiform pathology in mouse CNS lacking 'neuropathy target esterase' and cellular prion protein

Rosenbluth, Jack; Schiff, Rolf; Lam, Pokman; Nuriel, Tal; Chao, Moses V
Conditional inactivation of the 'neuropathy target esterase' (NTE) gene in mouse nerve cells was previously shown to result in CNS pathology comparable to the spongiform encephalopathy characteristic of prion diseases. To determine whether cellular prion protein (PrPc) is essential for development of this pathology we examined hippocampi of mice lacking NTE alone, PrPc alone or both NTE and PrPc. Light microscopic survey showed clear-cut spongiform changes in a majority of NTE-/- and NTE/PrP-/- double knockout mice but in only one PrP-/- mouse. EM analysis of spongiform lesions from NTE-/- and NTE/PrP-/- mice, and from the one affected PrP-/- mouse, revealed patches of branching tubular inclusions, comparable to the 'tubulovesicular inclusions' described previously in prion diseases. We conclude that spongiform pathology in conditional NTE knockout mice is not mediated by PrPc, and that tubulovesicular inclusions can be seen in spongiform encephalopathy of other etiologies and are not pathognomonic of prion disease
PMCID:2749466
PMID: 19524041
ISSN: 1095-953x
CID: 101443

Olfactory Perceptual Correlates of b-Amyloid Plaque Burden in Alzheimer's Disease Mouse Models [Meeting Abstract]

Wesson, DW; Levy, E; Nixon, RA; Wilson, DA
ISI:000269196800089
ISSN: 0379-864X
CID: 101941

Birth of Parthenote Mice Directly from Parthenogenetic Embryonic Stem Cells

Chen, Zhisheng; Liu, Zhong; Huang, Junjiu; Amano, Tomokazu; Li, Chao; Cao, Shanbo; Wu, Chao; Liu, Bodu; Zhou, Lingjun; Carter, Mark G; Keefe, David L; Yang, Xiangzhong; Liu, Lin
Mammalian parthenogenetic embryos are not viable and die due to defects in placental development and genomic imprinting. Parthenogenetic embryonic stem cells (pESC) derived from parthenogenetic embryos might advance regenerative medicine by avoiding immuno-rejection. However, previous reports suggest that pESC may fail to differentiate and contribute to some organs in chimeras, including muscle and pancreas, and it remains unclear whether pESC themselves can form all tissue types in the body. We found that derivation of pESC is more efficient than of fESC, in association with reduced MAPK signaling in parthenogenetic embryos and their ICM outgrowth. Furthermore, in vitro culture modifies the expression of imprinted genes in pESC and these cells, being functionally indistinguishable from fertilized embryo-derived ESCs, can contribute to all organs in chimeras. Even more surprisingly, our study shows that live parthenote pups were produced from pESC via tetraploid embryo complementation, which contributes to placenta development. This is the first demonstration that pESCs are capable of full-term development, and can differentiate into all cell types and functional organs in the body
PMID: 19544532
ISSN: 1549-4918
CID: 101968

Age-dependent dysregulation of brain amyloid precursor protein in the Ts65Dn Down syndrome mouse model

Choi, Jennifer H K; Berger, Jason D; Mazzella, Matthew J; Morales-Corraliza, Jose; Cataldo, Anne M; Nixon, Ralph A; Ginsberg, Stephen D; Levy, Efrat; Mathews, Paul M
Individuals with Down syndrome develop beta-amyloid deposition characteristic of early-onset Alzheimer's disease (AD) in mid-life, presumably because of an extra copy of the chromosome 21-located amyloid precursor protein (App) gene. App mRNA and APP metabolite levels were assessed in the brains of Ts65Dn mice, a mouse model of Down syndrome, using quantitative PCR, western blot analysis, immunoprecipitation, and ELISAs. In spite of the additional App gene copy, App mRNA, APP holoprotein, and all APP metabolite levels in the brains of 4-month-old trisomic mice were not increased compared with the levels seen in diploid littermate controls. However starting at 10 months of age, brain APP levels were increased proportional to the App gene dosage imbalance reflecting increased App message levels in Ts65Dn mice. Similar to APP levels, soluble amino-terminal fragments of APP (sAPPalpha and sAPPbeta) were increased in Ts65Dn mice compared with diploid mice at 12 months but not at 4 months of age. Brain levels of both Abeta40 and Abeta42 were not increased in Ts65Dn mice compared with diploid mice at all ages examined. Therefore, multiple mechanisms contribute to the regulation towards diploid levels of APP metabolites in the Ts65Dn mouse brain
PMCID:2744432
PMID: 19619138
ISSN: 1471-4159
CID: 126493

Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion

Varnat, Frederic; Duquet, Arnaud; Malerba, Monica; Zbinden, Marie; Mas, Christophe; Gervaz, Pascal; Ruiz i Altaba, Ariel
Human colon cancers often start as benign adenomas through loss of APC, leading to enhanced beta CATENIN (beta CAT)/TCF function. These early lesions are efficiently managed but often progress to invasive carcinomas and incurable metastases through additional changes, the nature of which is unclear. We find that epithelial cells of human colon carcinomas (CCs) and their stem cells of all stages harbour an active HH-GLI pathway. Unexpectedly, they acquire a high HEDGEHOG-GLI (HH-GLI) signature coincident with the development of metastases. We show that the growth of CC xenografts, their recurrence and metastases require HH-GLI function, which induces a robust epithelial-to-mesenchymal transition (EMT). Moreover, using a novel tumour cell competition assay we show that the self-renewal of CC stem cells in vivo relies on HH-GLI activity. Our results indicate a key and essential role of the HH-GLI1 pathway in promoting CC growth, stem cell self-renewal and metastatic behavior in advanced cancers. Targeting HH-GLI1, directly or indirectly, is thus predicted to decrease tumour bulk and eradicate CC stem cells and metastases.
PMCID:3378144
PMID: 20049737
ISSN: 1757-4676
CID: 916022

A functional antagonism between the pgc germline repressor and torso in the development of somatic cells

de Las Heras, Jose Manuel; Martinho, Rui Goncalo; Lehmann, Ruth; Casanova, Jordi
Segregation of the germline is a fundamental event during early development. In Drosophila, germ cells are specified at the posterior pole of the embryo by the germplasm. As zygotic expression is activated, germ cells remain transcriptionally silent owing to the polar granule component (Pgc), a small peptide present in germ cells. Somatic cells at both the embryonic ends are specified by the torso (Tor) receptor tyrosine kinase, and in tor mutants the somatic cells closer to the germ cells fail to cellularize correctly. Here, we show that extra wild-type gene copies of pgc cause a similar cellularization phenotype, and that both excessive pgc and a lack of tor are associated with an impairment of transcription in somatic cells. Moreover, a lack of pgc partly ameliorates the cellularization defect of tor mutants, thus revealing a functional antagonism between pgc and tor in the specification of germline and somatic properties. As transcriptional quiescence is a general feature of germ cells, similar mechanisms might operate in many organisms to 'protect' somatic cells that adjoin germ cells from inappropriately succumbing to such quiescence
PMCID:2750056
PMID: 19644502
ISSN: 1469-3178
CID: 113783

Defining the hair follicle stem cell (Part I)

Myung, Peggy; Andl, Thomas; Ito, Mayumi
PMID: 19674210
ISSN: 1600-0560
CID: 115710