Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14054


Imaging Real-Time Gene Expression in Living Cells [Meeting Abstract]

Singer, Robert H; Shav-Tal, Yaron; Darzacq, Xavier; de Turris, Valeria; Gruenwald, David; Chao, Jeffrey; Lionnet, Timothee; Shenoy, Shailesh
ISI:000208621502504
ISSN: 0892-6638
CID: 2385412

Development. Editorial overview [Editorial]

Hensch, Takao K; Brand, Andrea H
PMID: 19604684
ISSN: 1873-6882
CID: 5193022

Topology of mammalian isoprenylcysteine carboxyl methyltransferase determined in live cells with a fluorescent probe

Wright, Latasha P; Court, Helen; Mor, Adam; Ahearn, Ian M; Casey, Patrick J; Philips, Mark R
Isoprenylcysteine carboxyl methyltransferase (Icmt) is a highly conserved enzyme that methyl esterifies the alpha carboxyl group of prenylated proteins including Ras and related GTPases. Methyl esterification neutralizes the negative charge of the prenylcysteine and thereby increases membrane affinity. Icmt is an integral membrane protein restricted to the endoplasmic reticulum (ER). The Saccharomyces cerevisiae ortholog, Ste14p, traverses the ER membrane six times. We used a novel fluorescent reporter to map the topology of human Icmt in living cells. Our results indicate that Icmt traverses the ER membrane eight times, with both N and C termini disposed toward the cytosol and with a helix-turn-helix structure comprising transmembrane (TM) segments 7 and 8. Several conserved amino acids that map to cytoplasmic portions of the enzyme are critical for full enzymatic activity. Mammalian Icmt has an N-terminal extension consisting of two TM segments not found in Ste14p and therefore likely to be regulatory. Icmt is a target for anticancer drug discovery, and these data may facilitate efforts to develop small-molecule inhibitors
PMCID:2655619
PMID: 19158273
ISSN: 1098-5549
CID: 97752

Initiation of the unfolded protein response in melanocytes and melanoma [Meeting Abstract]

Bis, SG; Knoll, KE; Lolis, MS; Orlow, SJ; Manga, P
ISI:000264994000833
ISSN: 0022-202x
CID: 97878

Dual functions for LTBP in lung development: LTBP-4 independently modulates elastogenesis and TGF-beta activity

Dabovic, Branka; Chen, Yan; Choi, Jiwon; Vassallo, Melinda; Dietz, Harry C; Ramirez, Francesco; von Melchner, Harald; Davis, Elaine C; Rifkin, Daniel B
The latent TGF-beta binding proteins (LTBP) -1, -3, and -4 are extracellular proteins that assist in the secretion and localization of latent TGF-beta. The null mutation of LTBP-4S in mice causes defects in the differentiation of terminal air-sacs, fragmented elastin, and colon carcinomas. We investigated lung development from embryonic day 14.5 (E14.5) to day 7 after birth (P7) in order to determine when the defects in elastin organization initiate and to further examine the relation of TGF-beta signaling levels and air-sac septation in Ltbp4S-/- lungs. We found that defects in elastogenesis are visible as early as E14.5 and are maintained in the alveolar walls, in blood vessel media, and subjacent airway epithelium. The air-sac septation defect was associated with excessive TGF-beta signaling and was reversed by lowering TGF-beta2 levels. Thus, the phenotype is not directly reflective of a change in TGF-beta1, the only TGF-beta isoform known to complex with LTBP-4. Reversal of the air-sac septation defect was not associated with normalization of the elastogenesis indicating two separate functions of LTBP-4 as a regulator of elastic fiber assembly and TGF-beta levels in lungs
PMCID:2719250
PMID: 19016471
ISSN: 1097-4652
CID: 92147

Adenovirus-mediated delivery of an anti-V antigen monoclonal antibody protects mice against a lethal Yersinia pestis challenge

Sofer-Podesta, Carolina; Ang, John; Hackett, Neil R; Senina, Svetlana; Perlin, David; Crystal, Ronald G; Boyer, Julie L
Pneumonic plague, caused by inhalation of Yersinia pestis, represents a major bioterrorism threat for which no vaccine is available. Based on the knowledge that genetic delivery of monoclonal antibodies (MAbs) with adenovirus (Ad) gene transfer vectors results in rapid, high-level antibody expression, we evaluated the hypothesis that Ad-mediated delivery of a neutralizing antibody directed against the Y. pestis V antigen would protect mice against a Y. pestis challenge. MAbs specific for the Y. pestis V antigen were generated, and the most effective in protecting mice against a lethal intranasal Y. pestis challenge was chosen for further study. The coding sequences for the heavy and light chains were isolated from the corresponding hybridoma and inserted into a replication-defective serotype 5 human Ad gene transfer vector (AdalphaV). Western analysis of AdalphaV-infected cell supernatants demonstrated completely assembled antibodies reactive with V antigen. Following AdalphaV administration to mice, high levels of anti-V antigen antibody titers were detectable as early as 1 day postadministration, peaked by day 3, and remained detectable through a 12-week time course. When animals that received AdalphaV were challenged with Y. pestis at day 4 post-AdalphaV administration, 80% of the animals were protected, while 0% of control animals survived (P < 0.01). Ad-mediated delivery of a V antigen-neutralizing antibody is an effective therapy against plague in experimental animals and could be developed as a rapidly acting antiplague therapeutic.
PMCID:2663162
PMID: 19124600
ISSN: 1098-5522
CID: 5864582

Phosphorylation of the amino-terminal region of X11L regulates its interaction with APP

Sakuma, Megumi; Tanaka, Emi; Taru, Hidenori; Tomita, Susumu; Gandy, Sam; Nairn, Angus C; Nakaya, Tadashi; Yamamoto, Tohru; Suzuki, Toshiharu
X11-like (X11L) is neuronal adaptor protein that interacts with the amyloid beta-protein precursor (APP) and regulates its metabolism. The phosphotyrosine interaction/binding (PI/PTB) domain of X11L interacts with the cytoplasmic region of APP695. We found that X11L-APP interaction is enhanced in osmotically stressed cells and X11L modification is required for the enhancement. Amino acids 221-250 (X11L(221-250)) are required for the enhanced association with APP in osmotically stressed cells; this motif is 118 amino acids closer to the amino-terminal end of the protein than the PI/PTB domain (amino acids 368-555). We identified two phosphorylatable seryl residues, Ser236 and Ser238, in X11L(221-250) and alanyl substitution of either seryl residue diminished the enhanced association with APP. In brain Ser238 was found to be phosphorylated and phosphorylation of X11L was required for the interaction of X11L and APP. Both seryl residues in X11L(221-250) are conserved in neuronal X11, but not in X11L2, a non-neuronal X11 family member that did not exhibit enhanced APP association in osmotically stressed cells. These findings indicate that the region of X11L that regulates association with APP is located outside of, and amino-terminal to, the PI/PTB domain. Modification of this regulatory region may alter the conformation of the PI/PTB domain to modulate APP binding
PMCID:3846477
PMID: 19222704
ISSN: 1471-4159
CID: 139854

Endocannabinoid system: emerging role from neurodevelopment to neurodegeneration

Basavarajappa, Balapal S; Nixon, Ralph A; Arancio, Ottavio
The endocannabinoid system, including endogenous ligands ('endocannabinoids' ECs), their receptors, synthesizing and degrading enzymes, as well as transporter molecules, has been detected from the earliest stages of embryonic development and throughout pre- and postnatal development. ECs are bioactive lipids, which comprise amides, esters and ethers of long chain polyunsaturated fatty acids. Anandamide (N-arachidonoylethanolamine; AEA) and 2-arachidonoylglycerol (2-AG) are the best studied ECs, and act as agonists of cannabinoid receptors. Thus, AEA and 2-AG mimic several pharmacological effects of the exogenous cannabinoid delta9-tetrahydrocannabinol (Delta(9)-THC), the psychoactive principle of cannabis sativa preparations like hashish and marijuana. Recently, however, several lines of evidence have suggested that the EC system may play an important role in early neuronal development as well as a widespread role in neurodegeneration disorders. Many of the effects of cannabinoids and ECs are mediated by two G protein-coupled receptors (GPCRs), CB1 and CB2, although additional receptors may be implicated. Both CB1 and CB2 couple primarily to inhibitory G proteins and are subject to the same pharmacological influences as other GPCRs. This new system is briefly presented in this review, in order to put in a better perspective the role of the EC pathway from neurodevelopment to neurodegenerative disorders, like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In addition, the potential exploitation of antagonists of CB1 receptors, or of inhibitors of EC metabolism, as next-generation therapeutics is discussed
PMCID:4739730
PMID: 19356123
ISSN: 1389-5575
CID: 126495

Osteoblasts stimulated with pulsed electromagnetic fields increase HUVEC proliferation via a VEGF-A independent mechanism

Hopper, Richard A; VerHalen, Jon P; Tepper, Oren; Mehrara, Babek J; Detch, Robert; Chang, Edward I; Baharestani, Samuel; Simon, Bruce J; Gurtner, Geoffrey C
The clinically beneficial effect of low frequency pulsed electromagnetic fields (ELF-PEMF) on bone healing has been described, but the exact mechanism of action remains unclear. A recent study suggests that there is a direct autocrine mitogenic effect of ELF-PEMF on angiogenesis. The hypothesis of this study is that ELF-PEMF also has an indirect effect on angiogenesis by manipulation of vascular endothelial growth factor (VEGF)-A-based paracrine intercellular communication with neighboring osteoblasts. Conditioned media experiments measured fetal rat calvarial cell (FRC) and human umbilical vein endothelial cell (HUVEC) proliferation using tritiated thymidine uptake. We demonstrate that ELF-PEMF (15 Hz, 1.8 mT, for 8 h) has an indirect effect on the proliferation rate of both endothelial cells and osteoblasts in vitro by altering paracrine mediators. Conditioned media from osteoblast cells stimulated with ELF-PEMF increased endothelial proliferation 54-fold, whereas media from endothelial cells stimulated with ELF-PEMF did not affect osteoblast proliferation. We examined the role of the pro-angiogenic mediator VEGF-A in the mitogenic effect of ELF-PEMF-stimulated osteoblast media on endothelial cells. The production of VEGF-A by FRC as measured by ELISA was not changed by exposure to PEMF, and blocking experiments demonstrated that the ELF-PEMF-induced osteoblast-derived endothelial mitogen observed in these studies was not VEGF-A, but some other soluble angiogenic mediator
PMID: 19194859
ISSN: 1521-186x
CID: 96556

Treating chronic wound infections with genetically modified free flaps

Ghali, Shadi; Bhatt, Kirit A; Dempsey, Marlese P; Jones, Deidre M; Singh, Sunil; Aarabi, Shahram; Butler, Peter E; Gallo, Robert L; Gurtner, Geoffrey C
BACKGROUND: The success of antimicrobial therapy has been impaired by the emergence of resistant bacterial strains. Antimicrobial peptides are ubiquitous proteins that are part of the innate immune system and are successful against such antibiotic-resistant microorganisms. The authors have previously demonstrated the feasibility of protein delivery via microvascular free flap gene therapy and here they examine this approach for recalcitrant infections. METHODS: The authors investigated the production of the human cathelicidin antimicrobial peptide-LL37, delivered by ex vivo transduction of the rodent superficial inferior epigastric free flap with Ad/CMV-LL37. The vascular permeabilizing agent vascular endothelial growth factor (VEGF) was co-administered during ex vivo transduction with adenoviral vectors in an attempt to augment transduction efficiency. A rodent model of chronic wound/foreign body infection seeded with bioluminescent Staphylococcus aureus was used to assess the biological efficacy of delivering therapeutic antimicrobial genes using this technology. RESULTS: The authors were successful in demonstrating significant LL37 expression, which persisted for 14 days after ex vivo transduction with Ad/CMV-LL37. Transduction efficiency was significantly improved with the co-administration of 5 micrograms of VEGF during transduction without significantly increasing systemic dissemination of adenovirus or systemic toxicity. They were able to demonstrate in the rodent model of chronic wound/foreign body infections a significant reduction in bacterial loads from infected catheters following transduction with Ad/CMV-LL37 and increased bacterial clearance. CONCLUSION: This study demonstrates for the first time that microbicidal gene therapy via microvascular free flaps is able to clear chronic infections such as occurs with osteomyelitis resulting from trauma or an infected foreign body [corrected]
PMID: 19337084
ISSN: 1529-4242
CID: 2033252