Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14178


NAD(P)H quinone oxidoreductase 1 is essential for ozone-induced oxidative stress in mice and humans

Voynow, Judith A; Fischer, Bernard M; Zheng, Shuo; Potts, Erin N; Grover, Amy R; Jaiswal, Anil K; Ghio, Andrew J; Foster, W Michael
One host susceptibility factor for ozone identified in epidemiologic studies is NAD(P)H quinone oxidoreductase 1 (NQO1). We hypothesized that after ozone exposure, NQO1 is required to increase 8-isoprostane (also known as F(2)-isoprostane) production, a recognized marker of ozone-induced oxidative stress, and to enhance airway inflammation and hyperresponsiveness. In this report, we demonstrate that in contrast to wild-type mice, NQO1-null mice are resistant to ozone and have blunted responses, including decreased production of F(2)-isoprostane and keratinocyte chemokine, decreased airway inflammation, and diminished airway hyperresponsiveness. Importantly, these results in mice correlate with in vitro findings in humans. In primary human airway epithelial cells, inhibition of NQO1 by dicumarol blocks ozone-induced F(2)-isoprostane production and IL-8 gene expression. Together, these results demonstrate that NQO1 modulates cellular redox status and influences the biologic and physiologic effects of ozone.
PMCID:2701957
PMID: 19059883
ISSN: 1044-1549
CID: 989382

Effect of beta-carotene-rich tomato lycopene beta-cyclase ( tlcy-b) on cell growth inhibition in HT-29 colon adenocarcinoma cells

Palozza, Paola; Bellovino, Diana; Simone, Rossella; Boninsegna, Alma; Cellini, Francesco; Monastra, Giovanni; Gaetani, Sancia
Lycopene beta-cyclase (tlcy-b) tomatoes, obtained by modulating carotenogenesis via genetic engineering, contain a large amount of beta-carotene, as clearly visible by their intense orange colour. In the present study we have subjected tlcy-b tomatoes to an in vitro simulated digestion and analysed the effects of digestate on cell proliferation. To this aim we used HT-29 human colon adenocarcinoma cells, grown in monolayers, as a model. Digested tomatoes were diluted (20 ml, 50 ml and 100 ml/l) in culture medium and added to the cells for different incubation times (24 h, 48 h and 72 h). Inhibition of cell growth by tomato digestate was dose-dependent and resulted from an arrest of cell cycle progression at the G0/G1 and G2/M phase and by apoptosis induction. A down-regulation of cyclin D1, Bcl-2 and Bcl-xl expression was observed. We also found that heat treatment of samples before digestion enhanced beta-carotene release and therefore cell growth inhibition. To induce with purified beta-carotene solubilised in tetrahydrofuran the same cell growth inhibition obtained with the tomato digestate, a higher amount of the carotenoid was necessary, suggesting that beta-carotene micellarised during digestion is utilised more efficiently by the cells, but also that other tomato molecules, reasonably made available during digestion, may be present and cooperate with beta-carotene in promoting cell growth arrest.
PMID: 19105854
ISSN: 0007-1145
CID: 1368302

Frequency and evolution of Azole resistance in Aspergillus fumigatus associated with treatment failure

Howard, Susan J; Cerar, Dasa; Anderson, Michael J; Albarrag, Ahmed; Fisher, Matthew C; Pasqualotto, Alessandro C; Laverdiere, Michel; Arendrup, Maiken C; Perlin, David S; Denning, David W
Azoles are the mainstay of oral therapy for aspergillosis. Azole resistance in Aspergillus has been reported infrequently. The first resistant isolate was detected in 1999 in Manchester, UK. In a clinical collection of 519 A. fumigatus isolates, the frequency of itraconazole resistance was 5%, a significant increase since 2004 (p<0.001). Of the 34 itraconazole-resistant isolates we studied, 65% (22) were cross-resistant to voriconazole and 74% (25) were cross-resistant to posaconazole. Thirteen of 14 evaluable patients in our study had prior azole exposure; 8 infections failed therapy (progressed), and 5 failed to improve (remained stable). Eighteen amino acid alterations were found in the target enzyme, Cyp51A, 4 of which were novel. A population genetic analysis of microsatellites showed the existence of resistant mutants that evolved from originally susceptible strains, different cyp51A mutations in the same strain, and microalterations in microsatellite repeat number. Azole resistance in A. fumigatus is an emerging problem and may develop during azole therapy.
PMCID:2744247
PMID: 19624922
ISSN: 1080-6040
CID: 310022

The mechanisms of action of vacuum assisted closure: more to learn

Orgill, Dennis P; Manders, Ernest K; Sumpio, Bauer E; Lee, Raphael C; Attinger, Christopher E; Gurtner, Geoffrey C; Ehrlich, H Paul
PMID: 19541009
ISSN: 1532-7361
CID: 2033242

Attention enhances the retrieval and stability of visuospatial and olfactory representations in the dorsal hippocampus

Muzzio, Isabel A; Levita, Liat; Kulkarni, Jayant; Monaco, Joseph; Kentros, Clifford; Stead, Matthew; Abbott, Larry F; Kandel, Eric R
A key question in the analysis of hippocampal memory relates to how attention modulates the encoding and long-term retrieval of spatial and nonspatial representations in this region. To address this question, we recorded from single cells over a period of 5 days in the CA1 region of the dorsal hippocampus while mice acquired one of two goal-oriented tasks. These tasks required the animals to find a hidden food reward by attending to either the visuospatial environment or a particular odor presented in shifting spatial locations. Attention to the visuospatial environment increased the stability of visuospatial representations and phase locking to gamma oscillations--a form of neuronal synchronization thought to underlie the attentional mechanism necessary for processing task-relevant information. Attention to a spatially shifting olfactory cue compromised the stability of place fields and increased the stability of reward-associated odor representations, which were most consistently retrieved during periods of sniffing and digging when animals were restricted to the cup locations. Together, these results suggest that attention selectively modulates the encoding and retrieval of hippocampal representations by enhancing physiological responses to task-relevant information.
PMCID:2696347
PMID: 19564903
ISSN: 1544-9173
CID: 775852

Crystal structure of a fibroblast growth factor homologous factor (FHF) defines a conserved surface on FHFs for binding and modulation of voltage-gated sodium channels

Goetz, Regina; Dover, Katarzyna; Laezza, Fernanda; Shtraizent, Nataly; Huang, Xiao; Tchetchik, Dafna; Eliseenkova, Anna V; Xu, Chong-Feng; Neubert, Thomas A; Ornitz, David M; Goldfarb, Mitchell; Mohammadi, Moosa
Voltage-gated sodium channels (Nav) produce sodium currents that underlie the initiation and propagation of action potentials in nerve and muscle cells. Fibroblast growth factor homologous factors (FHFs) bind to the intracellular C-terminal region of the Nav alpha subunit to modulate fast inactivation of the channel. In this study we solved the crystal structure of a 149-residue-long fragment of human FHF2A which unveils the structural features of the homology core domain of all 10 human FHF isoforms. Through analysis of crystal packing contacts and site-directed mutagenesis experiments we identified a conserved surface on the FHF core domain that mediates channel binding in vitro and in vivo. Mutations at this channel binding surface impaired the ability of FHFs to co-localize with Navs at the axon initial segment of hippocampal neurons. The mutations also disabled FHF modulation of voltage-dependent fast inactivation of sodium channels in neuronal cells. Based on our data, we propose that FHFs constitute auxiliary subunits for Navs
PMCID:2719427
PMID: 19406745
ISSN: 0021-9258
CID: 100603

Latent transforming growth factor beta-binding proteins and fibulins compete for fibrillin-1 and exhibit exquisite specificities in binding sites

Ono, Robert N; Sengle, Gerhard; Charbonneau, Noe L; Carlberg, Valerie; Bachinger, Hans Peter; Sasaki, Takako; Lee-Arteaga, Sui; Zilberberg, Lior; Rifkin, Daniel B; Ramirez, Francesco; Chu, Mon-Li; Sakai, Lynn Y
Latent transforming growth factor (TGF) beta-binding proteins (LTBPs) interact with fibrillin-1. This interaction is important for proper sequestration and extracellular control of TGFbeta. Surface plasmon resonance interaction studies show that residues within the first hybrid domain (Hyb1) of fibrillin-1 contribute to interactions with LTBP-1 and LTBP-4. Modulation of binding affinities by fibrillin-1 polypeptides in which residues in the third epidermal growth factor-like domain (EGF3) are mutated demonstrates that the binding sites for LTBP-1 and LTBP-4 are different and suggests that EGF3 may also contribute residues to the binding site for LTBP-4. In addition, fibulin-2, fibulin-4, and fibulin-5 bind to residues contained within EGF3/Hyb1, but mutated polypeptides again indicate differences in their binding sites in fibrillin-1. Results demonstrate that these protein-protein interactions exhibit "exquisite specificities," a phrase commonly used to describe monoclonal antibody interactions. Despite these differences, interactions between LTBP-1 and fibrillin-1 compete for interactions between fibrillin-1 and these fibulins. All of these proteins have been immunolocalized to microfibrils. However, in fibrillin-1 (Fbn1) null fibroblast cultures, LTBP-1 and LTBP-4 are not incorporated into microfibrils. In contrast, in fibulin-2 (Fbln2) null or fibulin-4 (Fbln4) null cultures, fibrillin-1, LTBP-1, and LTBP-4 are incorporated into microfibrils. These data show for the first time that fibrillin-1, but not fibulin-2 or fibulin-4, is required for appropriate matrix assembly of LTBPs. These studies also suggest that the fibulins may affect matrix sequestration of LTBPs, because in vitro interactions between these proteins are competitive.
PMCID:2719323
PMID: 19349279
ISSN: 0021-9258
CID: 163506

Altered dynein-dependent transport in piRNA pathway mutants

Navarro, Caryn; Bullock, Simon; Lehmann, Ruth
Maintenance of genome integrity in germ cells is crucial for the success of future generations. In Drosophila, and mammals, transposable element activity in the germline can cause DNA breakage and sterility. Recent studies have shown that proteins involved in piRNA (PIWI-interacting RNA) biogenesis are necessary for retrotransposon silencing in the Drosophila germline. Females mutant for genes in the piRNA biogenesis pathway produce eggs with patterning defects that result from Chk-2 (checkpoint kinase-2) DNA damage checkpoint activation. Here we show that large ribonucleoprotein aggregates form in response to DNA damage checkpoint activation in egg chambers of females defective in piRNA biogenesis. Aggregate formation is specific to piRNA biogenesis mutants, as other mutations that activate the same Chk-2-dependent checkpoint do not cause aggregate formation. These aggregates contain components of the dynein motor machinery, retrotransposon RNA, and protein and axial patterning RNAs. Disruption of the aggregates by colcemid treatment leads to increased retrotransposon RNA levels, indicating that these structures may be the destination of retrotransposon RNA transport and may be degradation or sequestration sites. We propose that aggregate formation is a cellular response to protect germ cells from DNA damage caused by elevated retrotransposon expression
PMCID:2688001
PMID: 19478063
ISSN: 1091-6490
CID: 100481

What is remembered? Role of attention on the encoding and retrieval of hippocampal representations

Muzzio, Isabel A; Kentros, Clifford; Kandel, Eric
The hippocampus is critically involved in storing explicit memory such as memory for space. A defining feature of explicit memory storage is that it requires attention both for encoding and retrieval. Whereas, a great deal is now known about the mechanisms of storage, the mechanisms whereby attention modulates the encoding and retrieval of space and other hippocampus-dependent memory representations are not known. In this review we discuss recent studies, including our own, which show on the cellular level that attention is critical for the stabilization of spatial and reward-associated odour representations. Our findings support the view that in the hippocampus attention selects the reference frame for task-relevant information. This mechanism is in part mediated by dopamine acting through D1/D5 receptors and involves an increase in neuronal synchronization in the gamma band frequency. We propose that synchronous activity leads to enhancements in synaptic strength that mediate the stabilization of hippocampal representations.
PMCID:2718243
PMID: 19525568
ISSN: 0022-3751
CID: 775872

Correlation of expression and methylation of imprinted genes with pluripotency of parthenogenetic embryonic stem cells

Li, Chao; Chen, Zhisheng; Liu, Zhong; Huang, Junjiu; Zhang, Wei; Zhou, Lingjun; Keefe, David L; Liu, Lin
Mammalian parthenogenetic embryos (pE) are not viable due to placental deficiency, presumably resulting from lack of paternally expressed imprinted genes. Pluripotent parthenogenetic embryonic stem (pES) cells derived from pE could advance regenerative medicine by avoiding immuno-rejection and ethical roadblocks. We attempted to explore the epigenetic status of imprinted genes in the generation of pES cells from parthenogenetic blastocysts, and its relationship to pluripotency of pES cells. Pluripotency was evaluated for developmental and differentiation potential in vivo, based on contributions of pES cells to chimeras and development to day 9.5 of pES fetuses complemented by tetraploid embryos (TEC). Consistently, pE and fetuses failed to express paternally expressed imprinted genes, but pES cells expressed those genes in a pattern resembling that of fertilized embryos (fE) and fertilized embryonic stem (fES) cells derived from fE. Like fE and fES cells, but unlike pE or fetuses, pES cells and pES cell-fetuses complemented by TEC exhibited balanced methylation of Snrpn, Peg1 and U2af1-rs1. Coincidently, global methylation increased in pE but decreased in pES cells, further suggesting dramatic epigenetic reprogramming occurred during isolation and culture of pES cells. Moreover, we identified decreased methylation of Igf2r, Snrpn, and especially U2af1-rs1, in association with increased contributions of pES cells to chimeras. Our data show that in vitro culture changes epigenetic status of imprinted genes during isolation of pES cells from their progenitor embryos and that increased expression of U2af1-rs1 and Snrpn and decreased expression of Igf2r correlate with pluripotency of pES cells
PMID: 19324901
ISSN: 1460-2083
CID: 101970