Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neurology

Total Results:

23143


Navigating the U.S. regulatory landscape for neurologic digital health technologies

Busis, Neil A; Marolia, Dilshad; Montgomery, Robert; Balcer, Laura J; Galetta, Steven L; Grossman, Scott N
Digital health technologies (DHTs) can transform neurological assessments, improving quality and continuity of care. In the United States, the Food & Drug Administration (FDA) oversees the safety and efficacy of these technologies, employing a detailed regulatory process that classifies devices based on risk and requires rigorous review and post-market surveillance. Following FDA approval, DHTs enter the Current Procedural Terminology, Relative Value Scale Update Committee, and Centers for Medicare & Medicaid Services coding and valuation processes leading to coverage and payment decisions. DHT adoption is challenged by rapid technologic advancements, an inconsistent evidence base, marketing discrepancies, ambiguous coding guidance, and variable health insurance coverage. Regulators, policymakers, and payers will need to develop better methods to evaluate these promising technologies and guide their deployment. This includes striking a balance between patient safety and clinical effectiveness versus promotion of innovation, especially as DHTs increasingly incorporate artificial intelligence. Data validity, cybersecurity, risk management, societal, and ethical responsibilities should be addressed. Regulatory advances can support adoption of these promising tools by ensuring DHTs are safe, effective, accessible, and equitable.
PMCID:11014948
PMID: 38609447
ISSN: 2398-6352
CID: 5646182

Beyond Audio-Video Telehealth: Perspective on the Current State and Future Directions of Digital Neurological Care in the United States

Kummer, Benjamin R; Busis, Neil A
ORIGINAL:0017282
ISSN: 2817-092x
CID: 5670092

CDK-independent role of D-type cyclins in regulating DNA mismatch repair

Rona, Gergely; Miwatani-Minter, Bearach; Zhang, Qingyue; Goldberg, Hailey V; Kerzhnerman, Marc A; Howard, Jesse B; Simoneschi, Daniele; Lane, Ethan; Hobbs, John W; Sassani, Elizabeth; Wang, Andrew A; Keegan, Sarah; Laverty, Daniel J; Piett, Cortt G; Pongor, Lorinc S; Xu, Miranda Li; Andrade, Joshua; Thomas, Anish; Sicinski, Piotr; Askenazi, Manor; Ueberheide, Beatrix; Fenyö, David; Nagel, Zachary D; Pagano, Michele
Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.
PMID: 38458201
ISSN: 1097-4164
CID: 5655612

Sex-specific modulation of amyloid-β on tau phosphorylation underlies faster tangle accumulation in females

Wang, Yi-Ting; Therriault, Joseph; Servaes, Stijn; Tissot, Cécile; Rahmouni, Nesrine; Macedo, Arthur Cassa; Fernandez-Arias, Jaime; Mathotaarachchi, Sulantha S; Benedet, Andréa L; Stevenson, Jenna; Ashton, Nicholas J; Lussier, Firoza Z; Pascoal, Tharick A; Zetterberg, Henrik; Rajah, Maria Natasha; Blennow, Kaj; Gauthier, Serge; Rosa-Neto, Pedro; ,
Females are disproportionately affected by dementia due to Alzheimer's disease. Despite a similar amyloid-β (Aβ) load, a higher load of neurofibrillary tangles (NFTs) is seen in females than males. Previous literature has proposed that Aβ and phosphorylated-tau (p-tau) synergism accelerates tau tangle formation, yet the effect of biological sex in this process has been overlooked. In this observational study, we examined longitudinal neuroimaging data from the TRIAD and ADNI cohorts from Canada and USA, respectively. We assessed 457 participants across the clinical spectrum of Alzheimer's disease. All participants underwent baseline multimodal imaging assessment, including MRI and PET, with radioligands targeting Aβ plaques and tau tangles, respectively. CSF data were also collected. Follow-up imaging assessments were conducted at 1- and 2-year intervals for the TRIAD cohort and 1-, 2- and 4-year intervals for the ADNI cohort. The upstream pathological events contributing to faster tau progression in females were investigated-specifically, whether the contribution of Aβ and p-tau synergism to accelerated tau tangle formation is modulated by biological sex. We hypothesized that cortical Aβ predisposes tau phosphorylation and tangle accumulation in a sex-specific manner. Findings revealed that Aβ-positive females presented higher CSF p-tau181 concentrations compared with Aβ-positive males in both the TRIAD (P = 0.04, Cohen's d = 0.51) and ADNI (P = 0.027, Cohen's d = 0.41) cohorts. In addition, Aβ-positive females presented faster NFT accumulation compared with their male counterparts (TRIAD: P = 0.026, Cohen's d = 0.52; ADNI: P = 0.049, Cohen's d = 1.14). Finally, the triple interaction between female sex, Aβ and CSF p-tau181 was revealed as a significant predictor of accelerated tau accumulation at the 2-year follow-up visit (Braak I: P = 0.0067, t = 2.81; Braak III: P = 0.017, t = 2.45; Braak IV: P = 0.002, t = 3.17; Braak V: P = 0.006, t = 2.88; Braak VI: P = 0.0049, t = 2.93). Overall, we report sex-specific modulation of cortical Aβ in tau phosphorylation, consequently facilitating faster NFT progression in female individuals over time. This presents important clinical implications and suggests that early intervention that targets Aβ plaques and tau phosphorylation may be a promising therapeutic strategy in females to prevent the further accumulation and spread of tau aggregates.
PMID: 37988283
ISSN: 1460-2156
CID: 5864812

[1-11C]-Butanol Positron Emission Tomography reveals an impaired brain to nasal turbinates pathway in aging amyloid positive subjects

Mehta, Neel H; Wang, Xiuyuan; Keil, Samantha A; Xi, Ke; Zhou, Liangdong; Lee, Kevin; Tan, Wanbin; Spector, Edward; Goldan, Amirhossein; Kelly, James; Karakatsanis, Nicolas A; Mozley, P David; Nehmeh, Sadek; Chazen, J Levi; Morin, Simon; Babich, John; Ivanidze, Jana; Pahlajani, Silky; Tanzi, Emily B; Saint-Louis, Leslie; Butler, Tracy; Chen, Kewei; Rusinek, Henry; Carare, Roxana O; Li, Yi; Chiang, Gloria C; de Leon, Mony J
BACKGROUND:C]-Butanol, a highly permeable radiotracer with no appreciable brain binding, to test the hypothesis that tracer drainage from the nasal pathway reflects CSF drainage from brain. As a test of the hypothesis, we examined whether brain and nasal fluid drainage times were correlated and affected by brain amyloid. METHODS:F]-FBB identified 8 amyloid PET positive (Aβ+) and 16 Aβ- subjects. MRI-determined regions of interest (ROI) included: the carotid artery, the lateral orbitofrontal (LOF) brain, the cribriform plate, and an All-turbinate region comprised of the superior, middle, and inferior turbinates. The bilateral temporalis muscle and jugular veins served as control regions. Regional time-activity were used to model tracer influx, egress, and AUC. RESULTS:LOF and All-turbinate 60 min AUC were positively associated, thus suggesting a connection between the brain and the nose. Further, the Aβ+ subgroup demonstrated impaired tracer kinetics, marked by reduced tracer influx and slower egress. CONCLUSION/CONCLUSIONS:The data show that tracer kinetics for brain and nasal turbinates are related to each other and both reflect the amyloid status of the brain. As such, these data add to evidence that the nasal pathway is a potential CSF drainage site in humans. These data warrant further investigation of brain and nasal contributions to protein clearance in neurodegenerative disease.
PMCID:10985958
PMID: 38566110
ISSN: 2045-8118
CID: 5726112

Endocytic vesicles act as vehicles for glucose uptake in response to growth factor stimulation

Tsutsumi, Ryouhei; Ueberheide, Beatrix; Liang, Feng-Xia; Neel, Benjamin G; Sakai, Ryuichi; Saito, Yoshiro
Glycolysis is a fundamental cellular process, yet its regulatory mechanisms remain incompletely understood. Here, we show that a subset of glucose transporter 1 (GLUT1/SLC2A1) co-endocytoses with platelet-derived growth factor (PDGF) receptor (PDGFR) upon PDGF-stimulation. Furthermore, multiple glycolytic enzymes localize to these endocytosed PDGFR/GLUT1-containing vesicles adjacent to mitochondria. Contrary to current models, which emphasize the importance of glucose transporters on the cell surface, we find that PDGF-stimulated glucose uptake depends on receptor/transporter endocytosis. Our results suggest that growth factors generate glucose-loaded endocytic vesicles that deliver glucose to the glycolytic machinery in proximity to mitochondria, and argue for a new layer of regulation for glycolytic control governed by cellular membrane dynamics.
PMID: 38565573
ISSN: 2041-1723
CID: 5726222

The vial can help: Standardizing vial design to reduce the risk of medication errors

Bitan, Yuval; O'Connor, Michael F; Nunnally, Mark E
PMID: 38251720
ISSN: 1537-1913
CID: 5624642

The authors reply [Comment]

Frontera, Jennifer A
PMID: 38483229
ISSN: 1530-0293
CID: 5692212

Cannabinoid treatments in epilepsy and seizure disorders

Devinsky, Orrin; Jones, Nicholas A; Cunningham, Mark O; Jayasekera, B Ashan P; Devore, Sasha; Whalley, Benjamin J
Cannabis has been used to treat convulsions and other disorders since ancient times. In the last few decades, preclinical animal studies and clinical investigations have established the role of cannabidiol (CBD) in treating epilepsy and seizures and support potential therapeutic benefits for cannabinoids in other neurological and psychiatric disorders. Here, we comprehensively review the role of cannabinoids in epilepsy. We briefly review the diverse physiological processes mediating the central nervous system response to cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol, and terpenes. Next, we characterize the anti- and proconvulsive effects of cannabinoids from animal studies of acute seizures and chronic epileptogenesis. We then review the clinical literature on using cannabinoids to treat epilepsy, including anecdotal evidence and case studies as well as the more recent randomized controlled clinical trials that led to US Food and Drug Administration approval of CBD for some types of epilepsy. Overall, we seek to evaluate our current understanding of cannabinoids in epilepsy and focus future research on unanswered questions.
PMID: 37882730
ISSN: 1522-1210
CID: 5628142

On multi-path longitudinal spin relaxation in brain tissue

Assländer, Jakob; Mao, Andrew; Beck, Erin S; Rosa, Francesco La; Charlson, Robert W; Shepherd, Timothy M; Flassbeck, Sebastian
The purpose of this paper is to confirm previous reports that identified magnetization transfer (MT) as an inherent driver of longitudinal relaxation in brain tissue by asserting a substantial difference between the $T_1$ relaxation times of the free and the semi-solid spin pools. Further, we aim to identify an avenue towards the quantification of these relaxation processes on a voxel-by-voxel basis in a clinical imaging setting, i.e. with a nominal resolution of 1mm isotropic and full brain coverage in 12min. To this end, we optimized a hybrid-state pulse sequence for mapping the parameters of an unconstrained MT model. We scanned 4 people with relapsing-remitting multiple sclerosis (MS) and 4 healthy controls with this pulse sequence and estimated $T_1^f \approx 1.90$s and $T_1^s \approx 0.327$s for the free and semi-solid spin pool of healthy WM, respectively, confirming previous reports and questioning the commonly used assumptions $T_1^s = T_1^f$ or $T_1^s = 1$s. Further, we estimated a fractional size of the semi-solid spin pool of $m_0^s \approx 0.202$, which is larger than previously assumed. An analysis of $T_1^f$ in normal appearing white matter revealed statistically significant differences between individuals with MS and controls. In conclusion, we confirm that longitudinal spin relaxation in brain tissue is dominated by MT and that the hybrid state facilitates a voxel-wise fit of the unconstrained MT model, which enables the analysis of subtle neurodegeneration.
PMCID:9882584
PMID: 36713253
ISSN: 2331-8422
CID: 5473602