Searched for: school:SOM
Department/Unit:Cell Biology
Formation of molecular species of mitochondrial cardiolipin 2. A mathematical model of pattern formation by phospholipid transacylation
Schlame, Michael
Formation of the unique molecular species of mitochondrial cardiolipin requires tafazzin, a transacylase that exchanges acyl groups between phospholipid molecular species without strict specificity for acyl groups, head groups, or carbon positions. However, it is not known whether phospholipid transacylations can cause the accumulation of specific fatty acids in cardiolipin. Here, a model is shown in linear algebra representation, in which acyl specificity emerges from the transacylation equilibrium of multiple molecular species, provided that different species have different free energies. The model defines the conditions and energy terms, under which transacylations may generate the characteristic composition of mitochondrial cardiolipin. It is concluded that acyl-specific cardiolipin patterns could arise from phospholipid transacylations in the tafazzin domain, even if tafazzin itself does not have substrate specificity
PMCID:2679855
PMID: 19416646
ISSN: 0006-3002
CID: 98901
Cole disease: guttate hypopigmentation and punctate palmoplantar keratoderma [Letter]
Moore, Megan M; Orlow, Seth J; Kamino, Hideko; Wang, Nadia; Schaffer, Julie V
PMID: 19380683
ISSN: 0003-987x
CID: 108282
Catecholaminergic systems in stress: structural and molecular genetic approaches
Kvetnansky, Richard; Sabban, Esther L; Palkovits, Miklos
Stressful stimuli evoke complex endocrine, autonomic, and behavioral responses that are extremely variable and specific depending on the type and nature of the stressors. We first provide a short overview of physiology, biochemistry, and molecular genetics of sympatho-adrenomedullary, sympatho-neural, and brain catecholaminergic systems. Important processes of catecholamine biosynthesis, storage, release, secretion, uptake, reuptake, degradation, and transporters in acutely or chronically stressed organisms are described. We emphasize the structural variability of catecholamine systems and the molecular genetics of enzymes involved in biosynthesis and degradation of catecholamines and transporters. Characterization of enzyme gene promoters, transcriptional and posttranscriptional mechanisms, transcription factors, gene expression and protein translation, as well as different phases of stress-activated transcription and quantitative determination of mRNA levels in stressed organisms are discussed. Data from catecholamine enzyme gene knockout mice are shown. Interaction of catecholaminergic systems with other neurotransmitter and hormonal systems are discussed. We describe the effects of homotypic and heterotypic stressors, adaptation and maladaptation of the organism, and the specificity of stressors (physical, emotional, metabolic, etc.) on activation of catecholaminergic systems at all levels from plasma catecholamines to gene expression of catecholamine enzymes. We also discuss cross-adaptation and the effect of novel heterotypic stressors on organisms adapted to long-term monotypic stressors. The extra-adrenal nonneuronal adrenergic system is described. Stress-related central neuronal regulatory circuits and central organization of responses to various stressors are presented with selected examples of regulatory molecular mechanisms. Data summarized here indicate that catecholaminergic systems are activated in different ways following exposure to distinct stressful stimuli.
PMID: 19342614
ISSN: 0031-9333
CID: 606622
Endocannabinoid system: emerging role from neurodevelopment to neurodegeneration
Basavarajappa, Balapal S; Nixon, Ralph A; Arancio, Ottavio
The endocannabinoid system, including endogenous ligands ('endocannabinoids' ECs), their receptors, synthesizing and degrading enzymes, as well as transporter molecules, has been detected from the earliest stages of embryonic development and throughout pre- and postnatal development. ECs are bioactive lipids, which comprise amides, esters and ethers of long chain polyunsaturated fatty acids. Anandamide (N-arachidonoylethanolamine; AEA) and 2-arachidonoylglycerol (2-AG) are the best studied ECs, and act as agonists of cannabinoid receptors. Thus, AEA and 2-AG mimic several pharmacological effects of the exogenous cannabinoid delta9-tetrahydrocannabinol (Delta(9)-THC), the psychoactive principle of cannabis sativa preparations like hashish and marijuana. Recently, however, several lines of evidence have suggested that the EC system may play an important role in early neuronal development as well as a widespread role in neurodegeneration disorders. Many of the effects of cannabinoids and ECs are mediated by two G protein-coupled receptors (GPCRs), CB1 and CB2, although additional receptors may be implicated. Both CB1 and CB2 couple primarily to inhibitory G proteins and are subject to the same pharmacological influences as other GPCRs. This new system is briefly presented in this review, in order to put in a better perspective the role of the EC pathway from neurodevelopment to neurodegenerative disorders, like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In addition, the potential exploitation of antagonists of CB1 receptors, or of inhibitors of EC metabolism, as next-generation therapeutics is discussed
PMCID:4739730
PMID: 19356123
ISSN: 1389-5575
CID: 126495
A celebration of Clifford Jolly's contribution to biological anthropology [Historical Article]
Phillips-Conroy, Jane E; Rogers, Jeffrey
PMID: 19817221
ISSN: 0011-3204
CID: 311032
The efficacy of intra-articular hyaluronan injection after the microfracture technique for the treatment of articular cartilage lesions
Strauss, Eric; Schachter, Aaron; Frenkel, Sally; Rosen, Jeffrey
BACKGROUND: Although the exact mechanism of action has yet to be elucidated, recent animal studies have demonstrated chondroprotective and anti-inflammatory properties of hyaluronic acid viscosupplementation. HYPOTHESIS: Intra-articular hyaluronic acid after microfracture improves the quality of the repair leading to a more hyaline-like repair tissue with better defect fill and adjacent area integration. STUDY DESIGN: Controlled laboratory study. METHODS: Full-thickness cartilage defects were created in the weightbearing area of the medial femoral condyle in 36 female New Zealand White rabbits. The defects were then treated with surgical microfracture. Eighteen rabbits formed the 3-month cohort and the other 18 formed the 6-month cohort. Within each cohort, 6 rabbits were randomly assigned to receive 3 weekly injections of hyaluronic acid (group A), 5 weekly injections (group B), or control injections of normal saline (group C). At 3 and 6 months postmicrofracture, the animals were sacrificed and the operative knee harvested. Repair tissue was assessed blinded- both grossly, using a modified component of the International Cartilage Repair Society (ICRS) Cartilage Repair Assessment scoring scale, and histologically, using the modified O'Driscoll histological cartilage scoring system. Comparisons were made with respect to gross and histologic findings between treatment groups at each time point. Effects of each treatment type were also evaluated longitudinally by comparing the 3-month results with the 6-month results. Statistical analysis was performed using unpaired Student t tests with significance defined as P < .05. RESULTS: At 3 months, gross and histologic evaluation of the repair tissue demonstrated that the 3-injection group had significantly better fill of the defects and more normal appearing, hyaline-like tissue than controls (a mean ICRS score of 1.92 vs 1.26; P < .05 and a mean modified O'Driscoll score of 10.3 vs 7.6; P < .02). Specimens treated with 5 weekly injections were not significantly improved compared with controls. At 6 months, the mean gross appearance and histologic scores between the 3 specimen cohorts were not significantly different. However, examination of the entire operative knee demonstrated a significantly greater extent of degenerative changes (synovial inflammation and osteophyte formation) in the control group than in both hyaluronic acid treatment groups (P < .05). CONCLUSION: Supplementing the microfracture technique with 3 weekly injections of intra-articular hyaluronic acid had a positive effect on the repair tissue that formed within the chondral defect at the early follow-up time point. This improvement was not found for the 3-injection group at 6 months or for the 5-injection group at either time point. Additionally, hyaluronic acid supplementation had a possible chondroprotective and anti-inflammatory effect, limiting the development of degenerative changes within the knee joint. CLINICAL RELEVANCE: The adjunctive use of hyaluronic acid appears to hold promise in the treatment of chondral injuries and warrants further investigation
PMID: 19204370
ISSN: 1552-3365
CID: 100949
Phosphorylation of the amino-terminal region of X11L regulates its interaction with APP
Sakuma, Megumi; Tanaka, Emi; Taru, Hidenori; Tomita, Susumu; Gandy, Sam; Nairn, Angus C; Nakaya, Tadashi; Yamamoto, Tohru; Suzuki, Toshiharu
X11-like (X11L) is neuronal adaptor protein that interacts with the amyloid beta-protein precursor (APP) and regulates its metabolism. The phosphotyrosine interaction/binding (PI/PTB) domain of X11L interacts with the cytoplasmic region of APP695. We found that X11L-APP interaction is enhanced in osmotically stressed cells and X11L modification is required for the enhancement. Amino acids 221-250 (X11L(221-250)) are required for the enhanced association with APP in osmotically stressed cells; this motif is 118 amino acids closer to the amino-terminal end of the protein than the PI/PTB domain (amino acids 368-555). We identified two phosphorylatable seryl residues, Ser236 and Ser238, in X11L(221-250) and alanyl substitution of either seryl residue diminished the enhanced association with APP. In brain Ser238 was found to be phosphorylated and phosphorylation of X11L was required for the interaction of X11L and APP. Both seryl residues in X11L(221-250) are conserved in neuronal X11, but not in X11L2, a non-neuronal X11 family member that did not exhibit enhanced APP association in osmotically stressed cells. These findings indicate that the region of X11L that regulates association with APP is located outside of, and amino-terminal to, the PI/PTB domain. Modification of this regulatory region may alter the conformation of the PI/PTB domain to modulate APP binding
PMCID:3846477
PMID: 19222704
ISSN: 1471-4159
CID: 139854
Osteoblasts stimulated with pulsed electromagnetic fields increase HUVEC proliferation via a VEGF-A independent mechanism
Hopper, Richard A; VerHalen, Jon P; Tepper, Oren; Mehrara, Babek J; Detch, Robert; Chang, Edward I; Baharestani, Samuel; Simon, Bruce J; Gurtner, Geoffrey C
The clinically beneficial effect of low frequency pulsed electromagnetic fields (ELF-PEMF) on bone healing has been described, but the exact mechanism of action remains unclear. A recent study suggests that there is a direct autocrine mitogenic effect of ELF-PEMF on angiogenesis. The hypothesis of this study is that ELF-PEMF also has an indirect effect on angiogenesis by manipulation of vascular endothelial growth factor (VEGF)-A-based paracrine intercellular communication with neighboring osteoblasts. Conditioned media experiments measured fetal rat calvarial cell (FRC) and human umbilical vein endothelial cell (HUVEC) proliferation using tritiated thymidine uptake. We demonstrate that ELF-PEMF (15 Hz, 1.8 mT, for 8 h) has an indirect effect on the proliferation rate of both endothelial cells and osteoblasts in vitro by altering paracrine mediators. Conditioned media from osteoblast cells stimulated with ELF-PEMF increased endothelial proliferation 54-fold, whereas media from endothelial cells stimulated with ELF-PEMF did not affect osteoblast proliferation. We examined the role of the pro-angiogenic mediator VEGF-A in the mitogenic effect of ELF-PEMF-stimulated osteoblast media on endothelial cells. The production of VEGF-A by FRC as measured by ELISA was not changed by exposure to PEMF, and blocking experiments demonstrated that the ELF-PEMF-induced osteoblast-derived endothelial mitogen observed in these studies was not VEGF-A, but some other soluble angiogenic mediator
PMID: 19194859
ISSN: 1521-186x
CID: 96556
Treating chronic wound infections with genetically modified free flaps
Ghali, Shadi; Bhatt, Kirit A; Dempsey, Marlese P; Jones, Deidre M; Singh, Sunil; Aarabi, Shahram; Butler, Peter E; Gallo, Robert L; Gurtner, Geoffrey C
BACKGROUND: The success of antimicrobial therapy has been impaired by the emergence of resistant bacterial strains. Antimicrobial peptides are ubiquitous proteins that are part of the innate immune system and are successful against such antibiotic-resistant microorganisms. The authors have previously demonstrated the feasibility of protein delivery via microvascular free flap gene therapy and here they examine this approach for recalcitrant infections. METHODS: The authors investigated the production of the human cathelicidin antimicrobial peptide-LL37, delivered by ex vivo transduction of the rodent superficial inferior epigastric free flap with Ad/CMV-LL37. The vascular permeabilizing agent vascular endothelial growth factor (VEGF) was co-administered during ex vivo transduction with adenoviral vectors in an attempt to augment transduction efficiency. A rodent model of chronic wound/foreign body infection seeded with bioluminescent Staphylococcus aureus was used to assess the biological efficacy of delivering therapeutic antimicrobial genes using this technology. RESULTS: The authors were successful in demonstrating significant LL37 expression, which persisted for 14 days after ex vivo transduction with Ad/CMV-LL37. Transduction efficiency was significantly improved with the co-administration of 5 micrograms of VEGF during transduction without significantly increasing systemic dissemination of adenovirus or systemic toxicity. They were able to demonstrate in the rodent model of chronic wound/foreign body infections a significant reduction in bacterial loads from infected catheters following transduction with Ad/CMV-LL37 and increased bacterial clearance. CONCLUSION: This study demonstrates for the first time that microbicidal gene therapy via microvascular free flaps is able to clear chronic infections such as occurs with osteomyelitis resulting from trauma or an infected foreign body [corrected]
PMID: 19337084
ISSN: 1529-4242
CID: 2033252
Initiation of the unfolded protein response in melanocytes and melanoma [Meeting Abstract]
Bis, SG; Knoll, KE; Lolis, MS; Orlow, SJ; Manga, P
ISI:000264994000833
ISSN: 0022-202x
CID: 97878