Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14056


Mutation in the abcb7 gene causes abnormal iron and fatty acid metabolism in developing medaka fish

Miyake, Akimitsu; Higashijima, Shin-ichi; Kobayashi, Daisuke; Narita, Takanori; Jindo, Tomoko; Setiamarga, Davin H E; Ohisa, Satoshi; Orihara, Nobuaki; Hibiya, Kenta; Konno, Sayaka; Sakaguchi, Sae; Horie, Kyohei; Imai, Yoshiyuki; Naruse, Kiyoshi; Kudo, Akira; Takeda, Hiroyuki
The medaka fish (Oryzias latipes) is an emerging model organism for which a variety of unique developmental mutants have now been generated. Our recent mutagenesis screening of the medaka isolated a unique mutant that develops a fatty liver at larval stages. Positional cloning identified the responsible gene as medaka abcb7. Abcb7, a mitochondrial ABC (ATP binding cassette) half-transporter, has been implicated in iron metabolism. Recently, human Abcb7 was found to be mutated in X-linked sideroblastic anemia with cerebellar ataxia (XLSA/A). The homozygous medaka mutant exhibits abnormal iron metabolism in erythrocytes and accumulation of lipid in the liver. Microarray and in situ hybridization analyses demonstrated that the expression of genes involved in iron and lipid metabolisms are both affected in the mutant liver, suggesting novel roles of Abcb7 in the development of physiologically functional liver. The medaka abcb7 mutant thus could provide insights into the pathogenesis of XLSA/A as well as the normal function of the gene.
PMID: 19046159
ISSN: 1440-169x
CID: 2164082

Retinal pigment epithelial cells promote spatial reorganization and differentiation of retina photoreceptors

German, Olga L; Buzzi, Edgardo; Rotstein, Nora P; Rodriguez-Boulan, Enrique; Politi, Luis E
Retina differentiation involves the acquisition of a precise layered arrangement, with RPE cells in the first layer in intimate contact with photoreceptors in the second layer. Here, we developed an in vitro coculture model, to test the hypothesis that RPE cells play a pivotal role in organizing the spatial structure of the retina. We cocultured rat retinal neurons with ARPE-19 epithelial cells under various experimental conditions. Strikingly, when seeded over RPE cells, photoreceptors attached to their apical surfaces and proceeded with their development, including the increased synthesis of rhodopsin. Conversely, when we seeded RPE cells over neurons, the RPE cells rapidly detached photoreceptors from their substrata and positioned themselves underneath, thus restoring the normal in vivo arrangement. Treatment with the metalloproteinase inhibitor TIMP-1 blocked this reorganization, suggesting the involvement of metalloproteinases in this process. Reorganization was highly selective for photoreceptors because 98% of photoreceptors but very few amacrine neurons were found to redistribute on top of RPE cells. Interestingly, RPE cells were much more efficient than other epithelial or nonepithelial cells in promoting this reorganization. RPE cells also promoted the growth of photoreceptor axons away from them. An additional factor that contributed to the distal arrangement of photoreceptor axons was the migration of photoreceptor cell bodies along their own neurites toward the RPE cells. Our results demonstrate that RPE and photoreceptor cells interact in vitro in very specific ways. They also show that in vitro studies may provide important insights into the process of pattern formation in the retina.
PMCID:3768016
PMID: 18709656
ISSN: 0360-4012
CID: 375202

Anesthesia-induced hyperphosphorylation detaches 3-repeat tau from microtubules without affecting their stability in vivo

Planel, Emmanuel; Krishnamurthy, Pavan; Miyasaka, Tomohiro; Liu, Li; Herman, Mathieu; Kumar, Asok; Bretteville, Alexis; Figueroa, Helen Y; Yu, Wai Haung; Whittington, Robert A; Davies, Peter; Takashima, Akihiko; Nixon, Ralph A; Duff, Karen E
In Alzheimer's disease, tau is hyperphosphorylated, which is thought to detach it from microtubules (MTs), induce MT destabilization, and promote aggregation. Using a previously described in vivo model, we investigated whether hyperphosphorylation impacts tau function in wild-type and transgenic mice. We found that after anesthesia-induced hypothermia, MT-free tau was hyperphosphorylated, which impaired its ability to bind MTs and promote MT assembly. MT-bound tau was more resistant to hyperphosphorylation compared with free tau and tau did not dissociate from MTs in wild-type mice. However, 3-repeat tau detached from MT in the transgenic mice. Surprisingly, dissociation of tau from MTs did not lead to overt depolymerization of tubulin, and there was no collapse, or disturbance of axonal MT networks. These results indicate that, in vivo, a subpopulation of tau bound to MTs does not easily dissociate under conditions that extensively phosphorylate tau. Tau remaining on the MTs under these conditions is sufficient to maintain MT network integrity
PMCID:2610528
PMID: 19036972
ISSN: 1529-2401
CID: 96863

Single-dose, virus-vectored vaccine protection against Yersinia pestis challenge: CD4+ cells are required at the time of challenge for optimal protection

Chattopadhyay, Anasuya; Park, Steven; Delmas, Guillaume; Suresh, Rema; Senina, Svetlana; Perlin, David S; Rose, John K
We have developed an experimental recombinant vesicular stomatitis virus (VSV) vectored plague vaccine expressing a secreted form of Yersinia pestis low calcium response protein V (LcrV) from the first position of the VSV genome. This vector, given intramuscularly in a single dose, induced high-level antibody titers to LcrV and gave 90-100% protection against pneumonic plague challenge in mice. This single-dose protection was significantly better than that generated by VSV expressing the non-secreted LcrV protein. Increased protection correlated with increased anti-LcrV antibody and a bias toward IgG2a and away from IgG1 isotypes. We also found that the depletion of CD4+ cells, but not CD8+ cells, at the time of challenge resulted in reduced vaccine protection, indicating a role for cellular immunity in protection.
PMCID:2628553
PMID: 18832004
ISSN: 0264-410x
CID: 310072

Assessing the clinical utility of measuring Insulin-like Growth Factor Binding Proteins in tissues and sera of melanoma patients

Yu, Jessie Z; Warycha, Melanie A; Christos, Paul J; Darvishian, Farbod; Yee, Herman; Kaminio, Hideko; Berman, Russell S; Shapiro, Richard L; Buckley, Michael T; Liebes, Leonard F; Pavlick, Anna C; Polsky, David; Brooks, Peter C; Osman, Iman
BACKGROUND: Different Insulin-like Growth Factor Binding Proteins (IGFBPs) have been investigated as potential biomarkers in several types of tumors. In this study, we examined both IGFBP-3 and -4 levels in tissues and sera of melanoma patients representing different stages of melanoma progression. METHODS: The study cohort consisted of 132 melanoma patients (primary, n = 72; metastatic, n = 60; 64 Male, 68 Female; Median Age = 56) prospectively enrolled in the New York University School of Medicine Interdisciplinary Melanoma Cooperative Group (NYU IMCG) between August 2002 and December 2006. We assessed tumor-expression and circulating sera levels of IGFBP-3 and -4 using immunohistochemistry and ELISA assays. Correlations with clinicopathologic parameters were examined using Wilcoxon rank-sum tests and Spearman-rank correlation coefficients. RESULTS: Median IGFBP-4 tumor expression was significantly greater in primary versus metastatic patients (70% versus 10%, p = 0.01) A trend for greater median IGFBP-3 sera concentration was observed in metastatic versus primary patients (4.9 microg/ml vs. 3.4 microg/ml, respectively, p = 0.09). However, sera levels fell within a normal range for IGFBP-3. Neither IGFBP-3 nor -4 correlated with survival in this subset of patients. CONCLUSION: Decreased IGFBP-4 tumor expression might be a step in the progression from primary to metastatic melanoma. Our data lend support to a recently-described novel tumor suppressor role of secreting IGFBPs in melanoma. However, data do not support the clinical utility of measuring levels of IGFBP-3 and -4 in sera of melanoma patients
PMCID:2627832
PMID: 19025658
ISSN: 1479-5876
CID: 92159

The epithelial polarity program: machineries involved and their hijacking by cancer

Tanos, B; Rodriguez-Boulan, E
The Epithelial Polarity Program (EPP) adapts and integrates three ancient cellular machineries to construct an epithelial cell. The polarized trafficking machinery adapts the cytoskeleton and ancestral secretory and endocytic machineries to the task of sorting and delivering different plasma membrane (PM) proteins to apical and basolateral surface domains. The domain-identity machinery builds a tight junctional fence (TJ) between apical and basolateral PM domains and adapts ancient polarity proteins and polarity lipids on the cytoplasmic side of the PM, which have evolved to perform a diversity of polarity tasks across cells and species, to provide 'identity' to each epithelial PM domain. The 3D organization machinery utilizes adhesion molecules as positional sensors of other epithelial cells and the basement membrane and small GTPases as integrators of positional information with the activities of the domain-identity and polarized trafficking machineries. Cancer is a disease mainly of epithelial cells (90% of human cancers are carcinomas that derive from epithelial cells) that hijacks the EPP machineries, resulting in loss of epithelial polarity, which often correlates in extent with the aggressiveness of the tumor. Here, we review how the EPP integrates its three machineries and the strategies used by cancer to hijack them.
PMID: 19029936
ISSN: 0950-9232
CID: 375182

Engrailed homeobox genes determine the organization of Purkinje cell sagittal stripe gene expression in the adult cerebellum

Sillitoe, Roy V; Stephen, Daniel; Lao, Zhimin; Joyner, Alexandra L
Underlying the seemingly uniform cellular composition of the adult mammalian cerebellum (Cb) are striking parasagittal stripes of gene expression along the medial-lateral (ML) axis that are organized with respect to the lobules that divide the Cb along the anterior-posterior (AP) axis. Although there is a clear correlation between the organization of gene expression stripes and Cb activity patterns, little is known about the genetic pathways that determine the intrinsic stripe molecular code. Here we establish that ML molecular code patterning is highly dependent on two homeobox transcription factors, Engrailed1 (En1) and En2, both of which are also required for patterning the lobules. Gene expression analysis of an allelic series of En1/2 mutant mice that have an intact Purkinje cell layer revealed severe patterning defects using three known components of the ML molecular code and a new marker of Hsp25 negative stripes (Neurofilament heavy chain, Nfh). Importantly, the complementary expression of ZebrinII/PhospholipaseC beta4 and Hsp25/Nfh changes in unison in each mutant. Furthermore, each En gene has unique as well as overlapping functions in patterning the ML molecular code and each En protein has dominant functions in different AP domains (subsets of lobules). Remarkably, in En1/2 mutants with almost normal foliation, ML molecular code patterning is severely disrupted. Thus, independent mechanisms that use En1/2 must pattern foliation and spatial gene expression separately. Our studies reveal that En1/2 are fundamental components of the genetic pathways that pattern the two intersecting coordinate systems of the Cb, morphological divisions and the molecular code
PMCID:2864318
PMID: 19020009
ISSN: 1529-2401
CID: 96753

Marked calpastatin (CAST) depletion in Alzheimer's disease accelerates cytoskeleton disruption and neurodegeneration: neuroprotection by CAST overexpression

Rao, Mala V; Mohan, Panaiyur S; Peterhoff, Corrinne M; Yang, Dun-Sheng; Schmidt, Stephen D; Stavrides, Philip H; Campbell, Jabbar; Chen, Yuanxin; Jiang, Ying; Paskevich, Peter A; Cataldo, Anne M; Haroutunian, Vahram; Nixon, Ralph A
Increased activity of calpains is implicated in synaptic dysfunction and neurodegeneration in Alzheimer's disease (AD). The molecular mechanisms responsible for increased calpain activity in AD are not known. Here, we demonstrate that disease progression is propelled by a marked depletion of the endogenous calpain inhibitor, calpastatin (CAST), from AD neurons, which is mediated by caspase-1, caspase-3, and calpains. Initial CAST depletion focally along dendrites coincides topographically with calpain II and ERK 1/2 activation, tau cleavage by caspase-3, and tau and neurofilament hyperphosphorylation. These same changes, together with cytoskeletal proteolysis and neuronal cell death, accompany CAST depletion after intrahippocampal kainic acid administration to mice, and are substantially reduced in mice overexpressing human CAST. Moreover, CAST reduction by shRNA in neuronal cells causes calpain-mediated death at levels of calcium-induced injury that are sublethal to cells normally expressing CAST. Our results strongly support a novel hypothesis that CAST depletion by multiple abnormally activated proteases accelerates calpain dysregulation in AD leading to cytoskeleton disruption and neurodegeneration. CAST mimetics may, therefore, be neuroprotective in AD
PMCID:2819018
PMID: 19020018
ISSN: 1529-2401
CID: 94362

Differential expression of specific FGF ligands and receptor isoforms during osteogenic differentiation of mouse Adipose-derived Stem Cells (mASCs) recapitulates the in vivo osteogenic pattern

Quarto, Natalina; Longaker, Michael T
The ability of Adipose-derived Stem Cells (ASCs) to differentiate into various tissues in vitro and in vivo, a function known as "stem cell plasticity", makes them an appealing cell source for tissue engineering. Our laboratory is particularly focused on the potential role of adipose tissue as a readily available postnatal source of osteoprogenitor. Fibroblast growth factors (FGF) and their receptors (FGFR) are important regulators of osteogenesis. The goal of this study was to elucidate how changes in temporal expression patterns of individual components of the fibroblast growth factor (FGF) signaling axis correlate with osteogenic differentiation of mASCs. Our results indicate that FGF ligand genes, such as Fgf-2, -4, -8, and -18, displayed a differential and dynamic profile during mouse ASC (mASC) osteogenesis. Fgf-2 transcript was down-regulated, while Fgf-18 transcript level was strongly up-regulated. Interestingly, a drift in the ratio of different FGF-2 protein forms, with translation favoring the HMWFGF-2 forms, occurred during osteogenic differentiation, whereas, the expression of LMWFGF-2 form was down-regulated. This finding shares similarity with a previous study suggesting that preferential expression of the HMWFGF-2 forms is associated with a more osteogenic differentiated state of calvarial osteoblast. Moreover, a differential expression of Fgf Receptor 1 and 2 resembling that previously found in in vivo osteogenic study was observed. Thus, mASCs undergoing osteogenesis recapitulate the in vivo osteogenic differentiation expression pattern of FGF ligands and receptors of calvarial mesenchymal cells during their own osteogenic differentiation. Indeed, this observation further validates ASCs as a suitable resource for skeletal tissue engineering.
PMID: 18718860
ISSN: 0378-1119
CID: 1217272

Differential requirements of a mitotic acetyltransferase in somatic and germ line cells

Pimenta-Marques, Ana; Tostoes, Rui; Marty, Thomas; Barbosa, Vitor; Lehmann, Ruth; Martinho, Rui Goncalo
During mitosis different types of cells can have differential requirements for chromosome segregation. We isolated two new alleles of the separation anxiety gene (san). san was previously described in both Drosophila and in humans to be required for centromeric sister chromatid cohesion (Hou et al., 2007; Williams et al., 2003). Our work confirms and expands the observation that san is required in vivo for normal mitosis of different types of somatic cells. In addition, we suggest that san is also important for the correct resolution of chromosomes, implying a more general function of this acetyltransferase. Surprisingly, during oogenesis we cannot detect mitotic defects in germ line cells mutant for san. We hypothesize the female germ line stem cells have differential requirements for mitotic sister chromatid cohesion
PMCID:2605734
PMID: 18801358
ISSN: 1095-564x
CID: 95818