Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14183


Imaging transcription in living cells

Darzacq, Xavier; Yao, Jie; Larson, Daniel R; Causse, Sebastien Z; Bosanac, Lana; de Turris, Valeria; Ruda, Vera M; Lionnet, Timothee; Zenklusen, Daniel; Guglielmi, Benjamin; Tjian, Robert; Singer, Robert H
The advent of new technologies for the imaging of living cells has made it possible to determine the properties of transcription, the kinetics of polymerase movement, the association of transcription factors, and the progression of the polymerase on the gene. We report here the current state of the field and the progress necessary to achieve a more complete understanding of the various steps in transcription. Our Consortium is dedicated to developing and implementing the technology to further this understanding.
PMCID:3166783
PMID: 19416065
ISSN: 1936-122x
CID: 2385342

Pattern formation in the Drosophila eye disc

Roignant, Jean-Yves; Treisman, Jessica E
Differentiation of the Drosophila compound eye from the eye imaginal disc is a progressive process: columns of cells successively differentiate in a posterior to anterior sequence, clusters of cells form at regularly spaced intervals within each column, and individual photoreceptors differentiate in a defined order within each cluster. The progression of differentiation across the eye disc is driven by a positive autoregulatory loop of expression of the secreted molecule Hedgehog, which is temporally delayed by the intercalation of a second signal, Spitz. Hedgehog refines the spatial position at which each column initiates its differentiation by inducing secondary signals that act over different ranges to control the expression of positive and negative regulators. The position of clusters within each column is controlled by secreted inhibitory signals from clusters in the preceding column, and a single founder neuron, R8, is singled out within each cluster by Notch-mediated lateral inhibition. R8 then sequentially recruits surrounding cells to differentiate by producing a short-range signal, Spitz, which induces a secondary short-range signal, Delta. Intrinsic transcription factors act in combination with these two signals to produce cell-type diversity within the ommatidium. The Hedgehog and Spitz signals are transported along the photoreceptor axons and reused within the brain as long-range and local cues to trigger the differentiation and assembly of target neurons
PMCID:2713679
PMID: 19557685
ISSN: 1696-3547
CID: 100617

Kinetics and persistence of cardiovascular and locomotor effects of immobilization stress and influence of ACTH treatment

Sabban, Esther L; Schilt, Nina; Serova, Lidia I; Masineni, Shreeharsha N; Stier, Charles T Jr
Stress triggers crucial responses, including elevated blood pressure and heart rate (HR), to handle the emergency and restore homeostasis. However, continuation of these effects following cessation of the stress is implicated with many stress-related disorders. Here, we examine the kinetics and persistence of cardiovascular and locomotor responses to single and repeated immobilization stress (IMO), with and without prior treatment with adrenocorticotropic hormone (ACTH). Radiotelemetry probes were implanted into male Sprague-Dawley rats to continually monitor mean arterial pressure (MAP), HR and locomotor activity. Rats were subjected to IMO for 2 h daily (10 a.m. to noon, 6 consecutive days). The first IMO induced the greatest change in MAP (about 30 mm Hg) and HR (about 200 bpm). Following each IMO, MAP and HR were elevated during the remaining light phase and in the subsequent dark phase, HR was lower than prior to IMO. We further examined whether elevation of ACTH to a level similar to IMO will elicit similar effects, and if it will alter subsequent responses to IMO. Injection of ACTH (13 IU/kg, s.c.) triggered a short-lived rise in MAP, and decreased HR. After six daily injections of ACTH and recovery time (8 days), rats were immobilized as above. The cardiovascular responses were similar during the IMO, but the ACTH-pretreated group displayed differences following cessation of the IMO. In addition, IMO led to a large reduction of locomotor activity during the dark (normally active) phase to levels similar to the light phase. Following the IMOs, locomotor activity recovered more slowly in the ACTH-pretreated group. The study revealed that IMO-triggered cardiovascular and locomotor responses are evident after termination of the stress. In addition, prior exposure to ACTH delayed recovery in cardiovascular and locomotor functions following cessation of stress.
PMCID:2763367
PMID: 18698126
ISSN: 0028-3835
CID: 606652

nELAV proteins alteration in Alzheimer's disease brain: a novel putative target for amyloid-beta reverberating on AbetaPP processing

Amadio, Marialaura; Pascale, Alessia; Wang, Jun; Ho, Lap; Quattrone, Alessandro; Gandy, Sam; Haroutunian, Vahram; Racchi, Marco; Pasinetti, Giulio Maria
Neuronal ELAV (nELAV) proteins are RNA-binding proteins which play a physiological role in controlling gene expression in memory formation, and their alteration may contribute to cognitive impairment associated with neurodegenerative pathologies such as Alzheimer's disease (AD). Indeed, we found that the content of nELAV proteins is significantly decreased along with clinical dementia progression in the hippocampi of AD brains, where it inversely correlates with the amount of amyloid-beta (Abeta). To check the direct influence of Abeta on nELAV, we performed in vitro experiments using human SH-SY5Y cells, finding that Abeta(1-42) specifically determines nELAV proteins reduction. Since ADAM10 mRNA has the predicted sequences targeted by nELAV, we investigated whether Abeta, through nELAV proteins, could originate a vicious circle affecting amyloid-beta protein precursor (AbetaPP) processing. Immunoprecipitation experiments showed that indeed nELAV proteins bind to ADAM10 mRNA and that this binding is disrupted by Abeta(1-42) exposure, resulting in a decreased ADAM10 protein expression. ADAM10 protein diminution was also found in AD hippocampi. These data show for the first time the involvement of nELAV in AD pathology and suggest that their alteration may affect genes implicated in AbetaPP processing
PMCID:6057145
PMID: 19221430
ISSN: 1387-2877
CID: 139855

Association of cardiovascular factors and Alzheimer's disease plasma amyloid-beta protein in subjective memory complainers

Bates, Kristyn A; Sohrabi, Hamid R; Rodrigues, Mark; Beilby, John; Dhaliwal, Satvinder S; Taddei, Kevin; Criddle, Arthur; Wraith, Megan; Howard, Matthew; Martins, Georgia; Paton, Athena; Mehta, Pankaj; Foster, Jonathan K; Martins, Ian J; Lautenschlager, Nicola T; Mastaglia, Frank L; Laws, Simon M; Gandy, Samuel E; Martins, Ralph N
A strong link is indicated between cardiovascular disease (CVD) and risk for developing Alzheimer's disease (AD), which may be exacerbated by the major AD genetic risk factor apolipoprotein Eepsilon4 (APOEepsilon4). Since subjective memory complaint (SMC) may potentially be an early indicator for cognitive decline, we examined CVD risk factors in a cohort of SMC. As amyloid-beta (Abeta) is considered to play a central role in AD, we hypothesized that the CVD risk profile (increased LDL, reduced HDL, and increased body fat) would be associated with plasma Abeta levels. We explored this in 198 individuals with and without SMC (average age = 63 years). Correlations between Abeta40 and HDL were observed, which were stronger in non-APOEepsilon4 carriers (rho = -0.315, p < 0.001) and in SMC (rho = -0.322, p = 0.01). There was no relationship between percentage body fat and Abeta40 in this cohort. Age and HDL remained predictive for plasma Abeta40 using multivariate regression analysis. We report a novel negative association between HDL and Abeta, which if demonstrated to be causal has implications for the development of lifestyle interventions and/or novel therapeutics. The relationship between HDL and Abeta and the potential significance of such an association needs to be validated in a larger longitudinal study.
PMID: 19363264
ISSN: 1387-2877
CID: 968832

Divergent effects of PERK and IRE1 signaling on cell viability

Lin, Jonathan H; Li, Han; Zhang, Yuhong; Ron, David; Walter, Peter
Protein misfolding in the endoplasmic reticulum (ER) activates a set of intracellular signaling pathways, collectively termed the Unfolded Protein Response (UPR). UPR signaling promotes cell survival by reducing misfolded protein levels. If homeostasis cannot be restored, UPR signaling promotes cell death. The molecular basis for the switch between prosurvival and proapoptotic UPR function is poorly understood. The ER-resident proteins, PERK and IRE1, control two key UPR signaling pathways. Protein misfolding concomitantly activates PERK and IRE1 and has clouded insight into their contributions toward life or death cell fates. Here, we employed chemical-genetic strategies to activate individually PERK or IRE1 uncoupled from protein misfolding. We found that sustained PERK signaling impaired cell proliferation and promoted apoptosis. By contrast, equivalent durations of IRE1 signaling enhanced cell proliferation without promoting cell death. These results demonstrate that extended PERK and IRE1 signaling have opposite effects on cell viability. Differential activation of PERK and IRE1 may determine life or death decisions after ER protein misfolding
PMCID:2614882
PMID: 19137072
ISSN: 1932-6203
CID: 94499

Metal-ion-coated graphitic nanotubes: controlled self-assembly of a pyridyl-appended gemini-shaped hexabenzocoronene amphiphile

Zhang, Wei; Jin, Wusong; Fukushima, Takanori; Ishii, Noriyuki; Aida, Takuzo
The assembly line: Hexabenzocoronene amphiphiles appended with pyridyl-terminated triethylene glycol side chains, in combination with trans-[Pt(PhCN)(2)Cl(2)], lead to the formation of graphitic nanotubes. The structural features and dimensions of the nanotubes depend on the assembly conditions. A platinum(II)-bridged cyclic dimer having two HBC units self-assembles into a nanotubular structure.
PMID: 19472240
ISSN: 1521-3773
CID: 3171862

Progressive Ankylosis Gene (ank) Regulates Osteoblast Differentiation

Kirsch, Thorsten; Kim, Hyon Jong; Winkles, Jeffrey A
The progressive ankylosis gene (ank) is a transmembrane protein that transports intracellular pyrophosphate to the extracellular milieu. Human mutations of ank lead to craniometaphyseal dysplasia, a disease which is characterized by the overgrowth of craniofacial bones and osteopenia in long bones, suggesting that ANK plays a regulatory role in osteoblast differentiation. To determine the role of ANK in osteoblast differentiation, we suppressed ANK expression in the osteoblastic MC3T3-E1 cell line using siRNA and determined the expression of osteoblastic marker genes and the transcription factors osterix and runx2. In addition, we determined the osteoblastic differentiation of bone marrow stromal cells isolated from the bone marrow of ank/ank mice, which express a truncated, nonfunctional ANK protein, or wild-type littermates. Suppression of ANK expression in MC3T3-E1 cells led to a decrease in bone marker gene expression, including alkaline phosphatase, bone sialoprotein, osteocalcin and type I collagen. In addition, osterix gene expression was decreased in ANK expression-suppressed MC3T3 cells, whereas runx2 expression was increased. Bone marrow stromal cells isolated from ank/ank mice cultured in the presence of ascorbate-2-phosphate for up to 35 days showed markedly reduced mineralization compared to the mineralization of bone marrow stromal cells isolated from wild-type littermates. In conclusion, these findings suggest that ANK is a positive regulator of differentiation events towards a mature osteoblastic phenotype
PMCID:2824191
PMID: 18728347
ISSN: 1422-6421
CID: 83034

Temporal and spatial expression of RNases from zebrafish (Danio rerio)

Quarto, Natalina; Pizzo, Elio; D'Alessio, Giuseppe
We have recently isolated and characterized three zebrafish (Danio rerio) RNases, ZF-RNase-1,-2 and -3, endowed with diverse bioactivities, including microbicidal and angiogenic activities. In the present study we have analyzed their temporal and spatial gene expression profiles. Our results indicate that the three ZF-RNase genes have a differential expression pattern, with ZF-RNase-1 having the most unique and dynamic expression profile. This is characterized by expression in embryonic stages and later on, in larvae, juvenile and adult organisms. In contrast, ZF-RNase-2 and -3 are only expressed either in juvenile or adult organisms. Moreover, analysis of spatial expression of ZF-RNase-1, -2 and -3 detected the three different transcripts in liver, heart, gut and swim bladder tissues. Interestingly, ZF-RNase-1 was the only gene expressed in the brain of embryonic and adult organisms. Collectively, the results suggest that the three ZF-RNases may have potential distinct functional role(s) in zebrafish either during embryonic development and/or later on, in juvenile as well as in adult organisms. Indeed, taking advantage of zebrafish as an excellent viable model to study gene function, this study opens the way to an investigation of the in vivo role(s) of ZF-RNase-1 during embryonic development, as well as, during organogenesis.
PMID: 18852033
ISSN: 0378-1119
CID: 1429282

Dynamic regulation of alternative splicing by silencers that modulate 5' splice site competition

Yu, Yang; Maroney, Patricia A; Denker, John A; Zhang, Xiang H-F; Dybkov, Olexandr; Luhrmann, Reinhard; Jankowsky, Eckhard; Chasin, Lawrence A; Nilsen, Timothy W
Alternative splicing makes a major contribution to proteomic diversity in higher eukaryotes with approximately 70% of genes encoding two or more isoforms. In most cases, the molecular mechanisms responsible for splice site choice remain poorly understood. Here, we used a randomization-selection approach in vitro to identify sequence elements that could silence a proximal strong 5' splice site located downstream of a weakened 5' splice site. We recovered two exonic and four intronic motifs that effectively silenced the proximal 5' splice site both in vitro and in vivo. Surprisingly, silencing was only observed in the presence of the competing upstream 5' splice site. Biochemical evidence strongly suggests that the silencing motifs function by altering the U1 snRNP/5' splice site complex in a manner that impairs commitment to specific splice site pairing. The data indicate that perturbations of non-rate-limiting step(s) in splicing can lead to dramatic shifts in splice site choice.
PMCID:2645801
PMID: 19109894
ISSN: 0092-8674
CID: 524162