Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14061


The many intersecting pathways underlying apolipoprotein B secretion and degradation

Brodsky, Jeffrey L; Fisher, Edward A
Because the levels of secreted apolipoprotein B (apoB) directly correlate with circulating serum cholesterol levels, there is a pressing need to define how the biosynthesis of this protein is regulated. Most commonly, the concentration of a secreted, circulating protein corresponds to transcriptionally and/or translationally regulated events. By contrast, circulating apoB levels are controlled by degradative pathways in the cell that select the protein for disposal. This article summarizes recent findings on two apoB disposal pathways, endoplasmic reticulum (ER)-associated degradation and autophagy, and describes a role for post-ER degradation in the increased circulating lipid levels in insulin-resistant diabetics.
PMCID:3216472
PMID: 18691900
ISSN: 1043-2760
CID: 160640

A perspective on the structural studies of inner membrane electrochemical potential-driven transporters

Lemieux, M Joanne
Electrochemical potential-driven transporters represent a vast array of proteins with varied substrate specificities. While diverse in size and substrate specificity, they are all driven by electrochemical potentials. Over the past five years there have been increasing numbers of X-ray structures reported for this family of transporters. Structural information is available for five subfamilies of electrochemical potential-driven transporters. No structural information exists for the remaining 91 subfamilies. In this review, the various subfamilies of electrochemical potential-driven transporters are discussed. The seven reported structures for the electrochemical potential-driven transporters and the methods for their crystallization are also presented. With a few exceptions, overall crystallization trends have been very similar for the transporters despite their differences in substrate specificity and topology. Also discussed is why the structural studies on these transporters were successful while others are not as fruitful. With the plethora of transporters with unknown structures, this review provides incentive for crystallization of transporters in the remaining subfamilies for which no structural information exists.
PMID: 18252193
ISSN: 0006-3002
CID: 2286722

Skewing the Th cell phenotype toward Th1 alters the maturation of tumor-infiltrating mononuclear phagocytes

Nonaka, Kenichi; Saio, Masanao; Suwa, Tatsuhiko; Frey, Alan B; Umemura, Naoki; Imai, Hisashi; Ouyang, Guan-Feng; Osada, Shinji; Balazs, Margit; Adany, Roza; Kawaguchi, Yoshihiro; Yoshida, Kazuhiro; Takami, Tsuyoshi
Mononuclear phagocytes (MPCs) at the tumor site can be divided into subclasses, including monocyte-lineage myeloid-derived suppressor cells (MDSCs) and the immunosuppressive tumor-infiltrating macrophages (TIMs). Cancer growth coincides with the expansion of MDSCs found in the blood, secondary lymphoid organs, and tumor tissue. These MDSCs are thought to mature into macrophages and to promote tumor development by a combination of growth-enhancing properties and suppression of local antitumor immunoresponses. As little is known about either subset of MPCs, we investigated MPCs infiltrating into murine adenocarcinoma MCA38 tumors. We found that these MPCs displayed immunosuppressive characteristics and a MDSC cell-surface phenotype. Over 70% of the MPCs were mature (F4/80(+)Ly6C(-)) macrophages, and the rest were immature (F480(+) Ly6C(+)) monocytes. MPC maturation was inhibited when the cells infiltrated a tumor variant expressing IL-2 and soluble TNF type II receptor (sTNFRII). In addition, the IL-2/sTNFRII MCA38 tumor microenvironment altered the MPC phenotype; these cells did not survive culturing in vitro as a result of Fas-mediated apoptosis and negligible M-CSFR expression. Furthermore, CD4(+) tumor-infiltrating lymphocytes (TILs) in wild-type tumors robustly expressed IL-13, IFN-gamma, and GM-CSF, and CD4(+) TILs in IL-2/sTNFRII-expressing tumors expressed little IL-13. These data suggest that immunotherapy-altered Th cell balance in the tumor microenvironment can affect the differentiation and maturation of MPCs in vivo. Furthermore, as neither the designation MDSC nor TIM can sufficiently describe the status of monocytes/macrophages in this tumor microenvironment, we believe these cells are best designated as MPCs
PMID: 18566103
ISSN: 0741-5400
CID: 96103

F-spondin, a neuroregulatory protein, is upregulated in human and surgically-induced osteoarthritis: Evidence for regulation of cartilage metabolism via latent tgf-b1 activation [Meeting Abstract]

Attur, M; Palmer, G; Al-Mussawir, HE; Rifkin, DB; Teixeira, CC; Appleton, CTG; Beier, F; Abramson, SB
ISI:000259244202470
ISSN: 0004-3591
CID: 88578

Neuronal apoptosis and autophagy cross talk in aging PS/APP mice, a model of Alzheimer's disease

Yang, Dun-Sheng; Kumar, Asok; Stavrides, Philip; Peterson, Jesse; Peterhoff, Corrine M; Pawlik, Monika; Levy, Efrat; Cataldo, Anne M; Nixon, Ralph A
Mechanisms of neuronal loss in Alzheimer's disease (AD) are poorly understood. Here we show that apoptosis is a major form of neuronal cell death in PS/APP mice modeling AD-like neurodegeneration. Pyknotic neurons in adult PS/APP mice exhibited apoptotic changes, including DNA fragmentation, caspase-3 activation, and caspase-cleaved alpha-spectrin generation, identical to developmental neuronal apoptosis in wild-type mice. Ultrastructural examination using immunogold cytochemistry confirmed that activated caspase-3-positive neurons also exhibited chromatin margination and condensation, chromatin balls, and nuclear membrane fragmentation. Numbers of apoptotic profiles in both cortex and hippocampus of PS/APP mice compared with age-matched controls were twofold to threefold higher at 6 months of age and eightfold higher at 21 to 26 months of age. Additional neurons undergoing dark cell degeneration exhibited none of these apoptotic features. Activated caspase-3 and caspase-3-cleaved spectrin were abundant in autophagic vacuoles, accumulating in dystrophic neurites of PS/APP mice similar to AD brains. Administration of the cysteine protease inhibitor, leupeptin, promoted accumulation of autophagic vacuoles containing activated caspase-3 in axons of PS/APP mice and, to a lesser extent, in those of wild-type mice, implying that this pro-apoptotic factor is degraded by autophagy. Leupeptin-induced autophagic impairment increased the number of apoptotic neurons in PS/APP mice. Our findings establish apoptosis as a mode of neuronal cell death in aging PS/APP mice and identify the cross talk between autophagy and apoptosis, which influences neuronal survival in AD-related neurodegeneration
PMCID:2527090
PMID: 18688038
ISSN: 1525-2191
CID: 86556

Interactions between the L1 cell adhesion molecule and ezrin support traction-force generation and can be regulated by tyrosine phosphorylation

Sakurai, Takeshi; Gil, Orlando D; Whittard, John D; Gazdoiu, Mihaela; Joseph, Todd; Wu, James; Waksman, Adam; Benson, Deanna L; Salton, Stephen R; Felsenfeld, Dan P
An Ig superfamily cell-adhesion molecule, L1, forms an adhesion complex at the cell membrane containing both signaling molecules and cytoskeletal proteins. This complex mediates the transduction of extracellular signals and generates actin-mediated traction forces, both of which support axon outgrowth. The L1 cytoplasmic region binds ezrin, an adapter protein that interacts with the actin cytoskeleton. In this study, we analyzed L1-ezrin interactions in detail, assessed their role in generating traction forces by L1, and identified potential regulatory mechanisms controlling ezrin-L1 interactions. The FERM domain of ezrin binds to the juxtamembrane region of L1, demonstrated by yeast two-hybrid interaction traps and protein binding analyses in vitro. A lysine-to-leucine substitution in this domain of L1 (K1147L) shows reduced binding to the ezrin FERM domain. Additionally, in ND7 cells, the K1147L mutation inhibits retrograde movement of L1 on the cell surface that has been linked to the generation of the traction forces necessary for axon growth. A membrane-permeable peptide consisting of the juxtamembrane region of L1 that can disrupt endogenous L1-ezrin interactions inhibits neurite extension of cerebellar cells on L1 substrates. Moreover, the L1-ezrin interactions can be modulated by tyrosine phosphorylation of the L1 cytoplasmic region, namely, Y1151, possibly through Src-family kinases. Replacement of this tyrosine together with Y1176 with either aspartate or phenylalanine changes ezrin binding and alters colocalization with ezrin in ND7 cells. Collectively, these data suggest that L1-ezrin interactions mediated by the L1 juxtamembrane region are involved in traction-force generation and can be regulated by the phosphorylation of L1.
PMCID:2730939
PMID: 18478542
ISSN: 1097-4547
CID: 2518552

Bcl2, a transcriptional target of p38alpha, is critical for neuronal commitment of mouse embryonic stem cells

Trouillas, M; Saucourt, C; Duval, D; Gauthereau, X; Thibault, C; Dembele, D; Feraud, O; Menager, J; Rallu, M; Pradier, L; Boeuf, H
Mouse embryonic stem (ES) cells remain pluripotent in vitro when grown in the presence of leukemia inhibitory factor (LIF) cytokine. LIF starvation leads to cell commitment, and part of the ES-derived differentiated cells die by apoptosis together with caspase3-cleavage and p38alpha activation. Inhibition of p38 activity by chemical compounds (PD169316 and SB203580), along with LIF withdrawal, leads to different outcomes on cell apoptosis, giving the opportunity to study the influence of apoptosis on cell differentiation. By gene profiling studies on ES-derived differentiated cells treated or not with these inhibitors, we have characterized the common and specific set of genes modulated by each inhibitor. We have also identified key genes that might account for their different survival effects. In addition, we have demonstrated that some genes, similarly regulated by both inhibitors (upregulated as Bcl2, Id2, Cd24a or downregulated as Nodal), are bona fide p38alpha targets involved in neurogenesis and found a correlation with their expression profiles and the onset of neuronal differentiation triggered upon retinoic acid treatment. We also showed, in an embryoid body differentiation protocol, that overexpression of EGFP (enhanced green fluorescent protein)-BCL2 fusion protein and repression of p38alpha are essential to increase formation of TUJ1-positive neuronal cell networks along with an increase in Map2-expressing cells.
PMID: 18437159
ISSN: 1350-9047
CID: 4350692

Diabetes impairs the hypoxia response by blocking hypoxia inducible factor-1alpha binding to p300 [Meeting Abstract]

Thangarajah, Haribaran; Sbi, Yubin; Yao, Dachun; Jazayeri, Leila; Chang, Edward I.; Vial, I. Nick; Galiano, Robert D.; Ceradini, Daniel J.; Brownlee, Michael; Gurtner, Geoffrey C.
ISI:000259288500263
ISSN: 1072-7515
CID: 146286

Copper is taken up efficiently from albumin and alpha2-macroglobulin by cultured human cells by more than one mechanism

Moriya, Mizue; Ho, Yi-Hsuan; Grana, Anne; Nguyen, Linh; Alvarez, Arrissa; Jamil, Rita; Ackland, M Leigh; Michalczyk, Agnes; Hamer, Pia; Ramos, Danny; Kim, Stephen; Mercer, Julian F B; Linder, Maria C
Ionic copper entering blood plasma binds tightly to albumin and the macroglobulin transcuprein. It then goes primarily to the liver and kidney except in lactation, where a large portion goes directly to the mammary gland. Little is known about how this copper is taken up from these plasma proteins. To examine this, the kinetics of uptake from purified human albumin and alpha(2)-macroglobulin, and the effects of inhibitors, were measured using human hepatic (HepG2) and mammary epithelial (PMC42) cell lines. At physiological concentrations (3-6 muM), both cell types took up copper from these proteins independently and at rates similar to each other and to those for Cu-dihistidine or Cu-nitrilotriacetate (NTA). Uptakes from alpha(2)-macroglobulin indicated a single saturable system in each cell type, but with different kinetics, and 65-80% inhibition by Ag(I) in HepG2 cells but not PMC42 cells. Uptake kinetics for Cu-albumin were more complex and also differed with cell type (as was the case for Cu-histidine and NTA), and there was little or no inhibition by Ag(I). High Fe(II) concentrations (100-500 microM) inhibited copper uptake from albumin by 20-30% in both cell types and that from alpha(2)-macroglobulin by 0-30%, and there was no inhibition of the latter by Mn(II) or Zn(II). We conclude that the proteins mainly responsible for the plasma-exchangeable copper pool deliver the metal to mammalian cells efficiently and by several different mechanisms. alpha(2)-Macroglobulin delivers it primarily to copper transporter 1 in hepatic cells but not mammary epithelial cells, and additional as-yet-unidentified copper transporters or systems for uptake from these proteins remain to be identified.
PMCID:2544443
PMID: 18579803
ISSN: 0363-6143
CID: 281192

Supramolecular complex formation and crystallization of isocitrate dehydrogenase from Thermus thermophilus HB8: preliminary studies with X-Ray crystallography and atomic force microscopy

Ishii, Noriyuki; Umemura, Kazuo; Miyazaki, Kentaro
Atomic force microscopy (AFM) observation of a crystal surface of the thermostable isocitrate dehydrogenase (ICDH) from a thermophilic eubacterium, Thermus thermophilus HB8, suggested that the crystal consists of huge homo-complexed ellipsoidal bodies of the protein, with averaged long- and short-axis diameters of 18.6 nm and 10.9 nm respectively. Thick diamond-shaped crystals of about 0.4 mm on the longest axis were obtained by the vapor diffusion method from a solution of 100 mM sodium cacodylate, pH 6.6-8.4, containing 1.4 M sodium acetate as the precipitate, and diffracted X-rays at 3.7 A resolution. The crystals belonged to the monoclinic lattice type with space group C2 and had cell dimensions of a=495.5, b=189.2, c=336.2 A, and beta=126.4 degrees , indicating that an asymmetric unit contained more than 33 molecules with a molecular mass of 54.2 kDa. Calculations based on data obtained by the X-ray method showed good agreement with AFM observation. These results suggest the possibility that the residing T. thermophilus HB8 ICDH molecules are piled one on top another as a preformed supramolecular nano-architecture in the crystal lattice. The system appears suitable for further investigation using a bottom-up approach to the self-associated construction of nano-architectures with proteins.
PMID: 18776690
ISSN: 1347-6947
CID: 2983412