Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14089


Spatial Transcriptomics Stratifies Health and Psoriatic Disease Severity by Emergent Cellular Ecosystems [Meeting Abstract]

Castillo, Rochelle; Sidhu, Ikjot; Dolgalev, Igor; Subudhi, Ipsita; Yan, Di; Konieczny, Piotr; Hsieh, Brandon; Chu, Tinyi; Haberman, Rebecca; Selvaraj, Shanmugapriya; Shiomi, Tomoe; Medina, Rhina; Girija, Parvathy Vasudevanpillai; Heguy, Adriana; Loomis, Cynthia; Chiriboga, Luis; Meehan, Shane; Ritchlin, Christopher; Garcia-Hernandez, Maria de la Luz; Carucci, John; Neimann, Andrea; Naik, Shruti; Scher, Jose
ISI:000877386502162
ISSN: 2326-5191
CID: 5525672

Condensed Mitochondria Assemble Into the Acrosomal Matrix During Spermiogenesis

Ren, Mindong; Xu, Yang; Phoon, Colin K L; Erdjument-Bromage, Hediye; Neubert, Thomas A; Rajan, Sujith; Hussain, M Mahmood; Schlame, Michael
Mammalian spermatogenesis is associated with the transient appearance of condensed mitochondria, a singularity of germ cells with unknown function. Using proteomic analysis, respirometry, and electron microscopy with tomography, we studied the development of condensed mitochondria. Condensed mitochondria arose from orthodox mitochondria during meiosis by progressive contraction of the matrix space, which was accompanied by an initial expansion and a subsequent reduction of the surface area of the inner membrane. Compared to orthodox mitochondria, condensed mitochondria respired more actively, had a higher concentration of respiratory enzymes and supercomplexes, and contained more proteins involved in protein import and expression. After the completion of meiosis, the abundance of condensed mitochondria declined, which coincided with the onset of the biogenesis of acrosomes. Immuno-electron microscopy and the analysis of sub-cellular fractions suggested that condensed mitochondria or their fragments were translocated into the lumen of the acrosome. Thus, it seems condensed mitochondria are formed from orthodox mitochondria by extensive transformations in order to support the formation of the acrosomal matrix.
PMCID:9068883
PMID: 35531097
ISSN: 2296-634x
CID: 5214072

The Many Faces of G Protein-Coupled Receptor 143, an Atypical Intracellular Receptor

Bueschbell, Beatriz; Manga, Prashiela; Schiedel, Anke C
GPCRs transform extracellular stimuli into a physiological response by activating an intracellular signaling cascade initiated via binding to G proteins. Orphan G protein-coupled receptors (GPCRs) hold the potential to pave the way for development of new, innovative therapeutic strategies. In this review we will introduce G protein-coupled receptor 143 (GPR143), an enigmatic receptor in terms of classification within the GPCR superfamily and localization. GPR143 has not been assigned to any of the GPCR families due to the lack of common structural motifs. Hence we will describe the most important motifs of classes A and B and compare them to the protein sequence of GPR143. While a precise function for the receptor has yet to be determined, the protein is expressed abundantly in pigment producing cells. Many GPR143 mutations cause X-linked Ocular Albinism Type 1 (OA1, Nettleship-Falls OA), which results in hypopigmentation of the eyes and loss of visual acuity due to disrupted visual system development and function. In pigment cells of the skin, loss of functional GPR143 results in abnormally large melanosomes (organelles in which pigment is produced). Studies have shown that the receptor is localized internally, including at the melanosomal membrane, where it may function to regulate melanosome size and/or facilitate protein trafficking to the melanosome through the endolysosomal system. Numerous additional roles have been proposed for GPR143 in determining cancer predisposition, regulation of blood pressure, development of macular degeneration and signaling in the brain, which we will briefly describe as well as potential ligands that have been identified. Furthermore, GPR143 is a promiscuous receptor that has been shown to interact with multiple other melanosomal proteins and GPCRs, which strongly suggests that this orphan receptor is likely involved in many different physiological actions.
PMCID:9039016
PMID: 35495622
ISSN: 2296-889x
CID: 5215802

Transcriptional regulation of Acsl1 by CHREBP and NF-kappa B in macrophages during hyperglycemia and inflammation

Thevkar-Nagesh, Prashanth; Habault, Justine; Voisin, Maud; Ruff, Sophie E; Ha, Susan; Ruoff, Rachel; Chen, Xi; Rawal, Shruti; Zahr, Tarik; Szabo, Gyongyi; Rogatsky, Inez; Fisher, Edward A; Garabedian, Michael J
Acyl-CoA synthetase 1 (ACSL1) is an enzyme that converts fatty acids to acyl-CoA-derivatives for lipid catabolism and lipid synthesis in general and can provide substrates for the production of mediators of inflammation in monocytes and macrophages. Acsl1 expression is increased by hyperglycemia and inflammatory stimuli in monocytes and macrophages, and promotes the pro-atherosclerotic effects of diabetes in mice. Yet, surprisingly little is known about the mechanisms underlying Acsl1 transcriptional regulation. Here we demonstrate that the glucose-sensing transcription factor, Carbohydrate Response Element Binding Protein (CHREBP), is a regulator of the expression of Acsl1 mRNA by high glucose in mouse bone marrow-derived macrophages (BMDMs). In addition, we show that inflammatory stimulation of BMDMs with lipopolysaccharide (LPS) increases Acsl1 mRNA via the transcription factor, NF-kappa B. LPS treatment also increases ACSL1 protein abundance and localization to membranes where it can exert its activity. Using an Acsl1 reporter gene containing the promoter and an upstream regulatory region, which has multiple conserved CHREBP and NF-kappa B (p65/RELA) binding sites, we found increased Acsl1 promoter activity upon CHREBP and p65/RELA expression. We also show that CHREBP and p65/RELA occupy the Acsl1 promoter in BMDMs. In primary human monocytes cultured in high glucose versus normal glucose, ACSL1 mRNA expression was elevated by high glucose and further enhanced by LPS treatment. Our findings demonstrate that CHREBP and NF-kappa B control Acsl1 expression under hyperglycemic and inflammatory conditions.
PMCID:9439225
PMID: 36054206
ISSN: 1932-6203
CID: 5332252

The presence of 3D printing in orthopedics: A clinical and material review [Review]

Colon, Ricardo Rodriguez; Nayak, Vasudev Vivekanand; Parente, Paulo E. L.; Leucht, Philipp; Tovar, Nick; Lin, Charles C.; Rezzadeh, Kevin; Hacquebord, Jacques H.; Coelho, Paulo G.; Witek, Lukasz
ISI:000808151100001
ISSN: 0736-0266
CID: 5302692

The role of KRAS splice variants in cancer biology

Nuevo-Tapioles, Cristina; Philips, Mark R
The three mammalian RAS genes (HRAS, NRAS and KRAS) encode four proteins that play central roles in cancer biology. Among them, KRAS is mutated more frequently in human cancer than any other oncogene. The pre-mRNA of KRAS is alternatively spliced to give rise to two products, KRAS4A and KRAS4B, which differ in the membrane targeting sequences at their respective C-termini. Notably, both KRAS4A and KRAS4B are oncogenic when KRAS is constitutively activated by mutation in exon 2 or 3. Whereas KRAS4B is the most studied oncoprotein, KRAS4A is understudied and until recently considered relatively unimportant. Emerging work has confirmed expression of KRAS4A in cancer and found non-overlapping functions of the splice variants. The most clearly demonstrated of these is direct regulation of hexokinase 1 by KRAS4A, suggesting that the metabolic vulnerabilities of KRAS-mutant tumors may be determined in part by the relative expression of the splice variants. The aim of this review is to address the most relevant characteristics and differential functions of the KRAS splice variants as they relate to cancer onset and progression.
PMCID:9663995
PMID: 36393833
ISSN: 2296-634x
CID: 5384892

Transactivation of TrkB Receptors by Oxytocin and Its G Protein-Coupled Receptor

Mitre, Mariela; Saadipour, Khalil; Williams, Kevin; Khatri, Latika; Froemke, Robert C; Chao, Moses V
Brain-derived Neurotrophic Factor (BDNF) binds to the TrkB tyrosine kinase receptor, which dictates the sensitivity of neurons to BDNF. A unique feature of TrkB is the ability to be activated by small molecules in a process called transactivation. Here we report that the brain neuropeptide oxytocin increases BDNF TrkB activity in primary cortical neurons and in the mammalian neocortex during postnatal development. Oxytocin produces its effects through a G protein-coupled receptor (GPCR), however, the receptor signaling events that account for its actions have not been fully defined. We find oxytocin rapidly transactivates TrkB receptors in bath application of acute brain slices of 2-week-old mice and in primary cortical culture by increasing TrkB receptor tyrosine phosphorylation. The effects of oxytocin signaling could be distinguished from the related vasopressin receptor. The transactivation of TrkB receptors by oxytocin enhances the clustering of gephyrin, a scaffold protein responsible to coordinate inhibitory responses. Because oxytocin displays pro-social functions in maternal care, cognition, and social attachment, it is currently a focus of therapeutic strategies in autism spectrum disorders. Interestingly, oxytocin and BDNF are both implicated in the pathophysiology of depression, schizophrenia, anxiety, and cognition. These results imply that oxytocin may rely upon crosstalk with BDNF signaling to facilitate its actions through receptor transactivation.
PMCID:9201241
PMID: 35721318
ISSN: 1662-5099
CID: 5281802

The cervicovaginal microbiome at time of cerclage [Meeting Abstract]

Trostle, Megan E.; Griffin, Myah; Patberg, Elizabeth; Kidd, Jennifer; Chen, Ze; Ruggles, Kelly; Roman, Ashley S.; Keefe, David L.; Chervenak, Judith; Mehta-Lee, Shilpi S.; Heo, Hye; Brubaker, Sara G.
ISI:000737459400199
ISSN: 0002-9378
CID: 5208542

APOL1 variant-expressing endothelial cells exhibit autophagic dysfunction and mitochondrial stress

Blazer, Ashira; Qian, Yingzhi; Schlegel, Martin Paul; Algasas, Huda; Buyon, Jill P; Cadwell, Ken; Cammer, Michael; Heffron, Sean P; Liang, Feng-Xia; Mehta-Lee, Shilpi; Niewold, Timothy; Rasmussen, Sara E; Clancy, Robert M
Polymorphisms in the Apolipoprotein L1 (APOL1) gene are common in ancestrally African populations, and associate with kidney injury and cardiovascular disease. These risk variants (RV) provide an advantage in resisting Trypanosoma brucei, the causal agent of African trypanosomiasis, and are largely absent from non-African genomes. Clinical associations between the APOL1 high risk genotype (HRG) and disease are stronger in those with comorbid infectious or immune disease. To understand the interaction between cytokine exposure and APOL1 cytotoxicity, we established human umbilical vein endothelial cell (HUVEC) cultures representing each APOL1 genotype. Untreated HUVECs were compared to IFNÉ£-exposed; and APOL1 expression, mitochondrial function, lysosome integrity, and autophagic flux were measured. IFNÉ£ increased median APOL1 expression across all genotypes 22.1 (8.3 to 29.8) fold (p=0.02). Compared to zero risk variant-carrying HUVECs (0RV), HUVECs carrying 2 risk variant copies (2RV) showed both depressed baseline and maximum mitochondrial oxygen consumption (p<0.01), and impaired mitochondrial networking on MitoTracker assays. These cells also demonstrated a contracted lysosomal compartment, and an accumulation of autophagosomes suggesting a defect in autophagic flux. Upon blocking autophagy with non-selective lysosome inhibitor, hydroxychloroquine, autophagosome accumulation between 0RV HUVECs and untreated 2RV HUVECs was similar, implicating lysosomal dysfunction in the HRG-associated autophagy defect. Compared to 0RV and 2RV HUVECs, HUVECs carrying 1 risk variant copy (1RV) demonstrated intermediate mitochondrial respiration and autophagic flux phenotypes, which were exacerbated with IFNÉ£ exposure. Taken together, our data reveal that IFNÉ£ induces APOL1 expression, and that each additional RV associates with mitochondrial dysfunction and autophagy inhibition. IFNÉ£ amplifies this phenotype even in 1RV HUVECs, representing the first description of APOL1 pathobiology in variant heterozygous cell cultures.
PMCID:9551299
PMID: 36238153
ISSN: 1664-8021
CID: 5361182

Troxerutin-Mediated Complement Pathway Inhibition is a Disease-Modifying Treatment for Inflammatory Arthritis

Sahu, Debasis; Bishwal, Subasa Chandra; Malik, Md Zubbair; Sahu, Sukanya; Kaushik, Sandeep Rai; Sharma, Shikha; Saini, Ekta; Arya, Rakesh; Rastogi, Archana; Sharma, Sandeep; Sen, Shanta; Singh, R K Brojen; Liu, Chuan-Ju; Nanda, Ranjan Kumar; Panda, Amulya Kumar
Troxerutin (TXR) is a phytochemical reported to possess anti-inflammatory and hepatoprotective effects. In this study, we aimed to exploit the antiarthritic properties of TXR using an adjuvant-induced arthritic (AIA) rat model. AIA-induced rats showed the highest arthritis score at the disease onset and by oral administration of TXR (50, 100, and 200 mg/kg body weight), reduced to basal level in a dose-dependent manner. Isobaric tags for relative and absolute quantitative (iTRAQ) proteomics tool were employed to identify deregulated joint homogenate proteins in AIA and TXR-treated rats to decipher the probable mechanism of TXR action in arthritis. iTRAQ analysis identified a set of 434 proteins with 65 deregulated proteins (log2 case/control≥1.5) in AIA. Expressions of a set of important proteins (AAT, T-kininogen, vimentin, desmin, and nucleophosmin) that could classify AIA from the healthy ones were validated using Western blot analysis. The Western blot data corroborated proteomics findings. In silico protein-protein interaction study of tissue-proteome revealed that complement component 9 (C9), the major building blocks of the membrane attack complex (MAC) responsible for sterile inflammation, get perturbed in AIA. Our dosimetry study suggests that a TXR dose of 200 mg/kg body weight for 15 days is sufficient to bring the arthritis score to basal levels in AIA rats. We have shown the importance of TXR as an antiarthritic agent in the AIA model and after additional investigation, its arthritic ameliorating properties could be exploited for clinical usability.
PMCID:9009527
PMID: 35433699
ISSN: 2296-634x
CID: 5218122