Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13474


Non-Markovian noise mediated through anomalous diffusion within ion channels

Roy, Sisir; Mitra, Indranil; Llinas, Rodolfo
It is evident from a wide range of experimental findings that ion channel gating is inherently stochastic. The issue of 'memory effects' (diffusional retardation due to local changes in water viscosity) in ionic flow has been recently addressed using Brownian dynamics simulations. The results presented indicate such memory effects are negligible, unless the diffusional barrier is much higher than that of free solute. In this paper using differential stochastic methods we conclude that the Markovian property of exponential dwell times gives rise to a high barrier, resulting in diffusional memory effects that cannot be ignored in determining ionic flow through channels. We have addressed this question using a generalized Langevin equation that contains a combination of Markovian and non-Markovian processes with different time scales. This approach afforded the development of an algorithm that describes an oscillatory ionic diffusional sequence. The resulting oscillatory function behavior, with exponential decay, was obtained at the weak non-Markovian limit with two distinct time scales corresponding to the processes of ionic diffusion and drift. This will be analyzed further in future studies using molecular dynamics simulations. We propose that the rise of time scales and memory effects is related to differences of shear viscosity in the cytoplasm and extracellular matrix
PMID: 18999468
ISSN: 1539-3755
CID: 95898

Immunotherapy targeting pathological tau protein in Alzheimer's disease and related tauopathies

Sigurdsson, Einar M
Immunotherapies that target the amyloid-beta (Abeta) peptide in Alzheimer's disease (AD) have shown promise in animal and human studies. Although the first clinical trial was halted because of adverse reactions, this approach has been refined and additional trials are underway. Another important target in AD is the neurofibrillary tangles, composed primarily of hyperphosphorylated tau proteins, which correlate well with the degree of dementia. As Abeta and tau pathologies are likely synergistic, targeting both should be more effective and may be essential as early diagnosis prior to cognitive decline is currently not available. Also, Abeta immunotherapy only results in a very limited indirect clearance of tau aggregates in dystrophic neurites, showing the importance of developing a separate therapy that directly targets pathological tau. Our findings in two tangle mouse models indicate that immunization with a phospho-tau derivative reduces aggregated tau in the brain and slows progression of the tangle-related behavioral phenotype. These antibodies enter the brain and bind to pathological tau within neurons. We are currently clarifying further the mechanism of action of this promising therapeutic approach and determining its epitope specificity
PMCID:2757121
PMID: 18953105
ISSN: 1387-2877
CID: 90050

Gene expression in cortical interneuron precursors is prescient of their mature function

Batista-Brito, Renata; Machold, Robert; Klein, Corinna; Fishell, Gord
At present little is known about the developmental mechanisms that give rise to inhibitory gamma-aminobutyric acidergic interneurons of the neocortex or the timing of their subtype specification. As such, we performed a gene expression microarray analysis on cortical interneuron precursors isolated through their expression of a Dlx5/6(Cre-IRES-EGFP) transgene. We purified these precursors from the embryonic mouse neocortex at E13.5 and E15.5 by sorting of enhanced green fluorescent protein-expressing cells. We identified novel transcription factors, neuropeptides, and cell surface genes whose expression is highly enriched in embryonic cortical interneuron precursors. Our identification of many of the genes known to be selectively enriched within cortical interneurons validated the efficacy of our approach. Surprisingly, we find that subpopulations of migrating cortical interneurons express genes encoding for proteins characteristic of mature interneuron subtypes as early as E13.5. These results provide support for the idea that many of the genes characteristic of specific cortical interneuron subtypes are evident prior to their functional integration into cortical microcircuitry. They suggest interneurons are already relegated to specific genetic subtypes shortly after they become postmitotic. Moreover, our work has revealed that many of the genes expressed in cortical interneuron precursors have been independently linked to neurological disorders in both mice and humans
PMCID:2536702
PMID: 18250082
ISSN: 1460-2199
CID: 91427

Different inflammatory reactions to vitamin D3 among the lateral, third and fourth ventricular choroid plexuses of the rat

Levine, Seymour; Saltzman, Arthur; Ginsberg, Stephen D
The four choroid plexuses in the brain ventricles are not identical, but differences among them have rarely been studied. The present work concerns the inflammatory and hemorrhagic choroid plexitis produced in Lewis rats by a single gavage of cholecalciferol (vitamin D(3)) or related steroids with vitamin D activity. Plexitis was very severe in the fourth ventricular plexus, somewhat less severe in the lateral ventricular plexuses, and almost absent in the third ventricular plexus. These findings were compared to the scanty data from the literature on differences among the plexuses.
PMCID:4346282
PMID: 18675267
ISSN: 0014-4800
CID: 448562

Kv4 accessory protein DPPX (DPP6) is a critical regulator of membrane excitability in hippocampal CA1 pyramidal neurons

Kim, Jinhyun; Nadal, Marcela S; Clemens, Ann M; Baron, Matthew; Jung, Sung-Cherl; Misumi, Yoshio; Rudy, Bernardo; Hoffman, Dax A
A-type K+ currents have unique kinetic and voltage-dependent properties that allow them to finely tune synaptic integration, action potential (AP) shape and firing patterns. In hippocampal CA1 pyramidal neurons, Kv4 channels make up the majority of the somatodendritic A-type current. Studies in heterologous expression systems have shown that Kv4 channels interact with transmembrane dipeptidyl-peptidase-like proteins (DPPLs) to regulate the surface trafficking and biophysical properties of Kv4 channels. To investigate the influence of DPPLs in a native system, we conducted voltage-clamp experiments in patches from CA1 pyramidal neurons expressing short-interfering RNA (siRNA) targeting the DPPL variant known to be expressed in hippocampal pyramidal neurons, DPPX (siDPPX). In accordance with heterologous studies, we found that DPPX downregulation in neurons resulted in depolarizing shifts of the steady-state inactivation and activation curves, a shallower conductance-voltage slope, slowed inactivation, and a delayed recovery from inactivation for A-type currents. We carried out current-clamp experiments to determine the physiological effect of the A-type current modifications by DPPX. Neurons expressing siDPPX exhibited a surprisingly large reduction in subthreshold excitability as measured by a decrease in input resistance, delayed time to AP onset, and an increased AP threshold. Suprathreshold DPPX downregulation resulted in slower AP rise and weaker repolarization. Computer simulations supported our experimental results and demonstrated how DPPX remodeling of A-channel properties can result in opposing sub- and suprathreshold effects on excitability. The Kv4 auxiliary subunit DPPX thus acts to increase neuronal responsiveness and enhance signal precision by advancing AP initiation and accelerating both the rise and repolarization of APs
PMCID:2576216
PMID: 18667548
ISSN: 0022-3077
CID: 94590

Estimation of the orientation distribution function from diffusional kurtosis imaging

Lazar, Mariana; Jensen, Jens H; Xuan, Liang; Helpern, Joseph A
The Orientation Distribution Function (ODF) is used to describe the directionality of multimodal diffusion in regions with complex fiber architecture present in brain and other biological tissues. In this study, an approximation for the ODF of water diffusion from diffusional kurtosis imaging (DKI) is presented. DKI requires only a relatively limited number of diffusion measurements and, for the brain, b values no higher than 2500 s/mm(2). The DKI-based ODF approximation is decomposed into two components representing the Gaussian and non-Gaussian (NG) diffusion contributions, respectively. Simulations of multiple fiber configurations show that both the total and the NG-ODF are able to resolve the orientations of the component fibers, with the NG-ODF being the most sensitive to profiling the fibers' directions. Orientation maps obtained for in vivo brain imaging data demonstrate multiple fiber components in brain regions with complex anatomy. The results appear to be in agreement with known white matter architecture. Magn Reson Med 60:774-781, 2008. (c) 2008 Wiley-Liss, Inc
PMCID:2562250
PMID: 18816827
ISSN: 1522-2594
CID: 86153

Hydrophobic surfaces for enhanced differentiation of embryonic stem cell-derived embryoid bodies

Valamehr, Bahram; Jonas, Steven J; Polleux, Julien; Qiao, Rong; Guo, Shuling; Gschweng, Eric H; Stiles, Bangyan; Kam, Korey; Luo, Tzy-Jiun M; Witte, Owen N; Liu, Xin; Dunn, Bruce; Wu, Hong
With their unique ability to differentiate into all cell types, embryonic stem (ES) cells hold great therapeutic promise. To improve the efficiency of embryoid body (EB)-mediated ES cell differentiation, we studied murine EBs on the basis of their size and found that EBs with an intermediate size (diameter 100-300 microm) are the most proliferative, hold the greatest differentiation potential, and have the lowest rate of cell death. In an attempt to promote the formation of this subpopulation, we surveyed several biocompatible substrates with different surface chemical parameters and identified a strong correlation between hydrophobicity and EB development. Using self-assembled monolayers of various lengths of alkanethiolates on gold substrates, we directly tested this correlation and found that surfaces that exhibit increasing hydrophobicity enrich for the intermediate-size EBs. When this approach was applied to the human ES cell system, similar phenomena were observed. Our data demonstrate that hydrophobic surfaces serve as a platform to deliver uniform EB populations and may significantly improve the efficiency of ES cell differentiation.
PMCID:2567159
PMID: 18791068
ISSN: 0027-8424
CID: 371872

Maximum differentiation (MAD) competition: a methodology for comparing computational models of perceptual quantities

Wang, Zhou; Simoncelli, Eero P
We propose an efficient methodology for comparing computational models of a perceptually discriminable quantity. Rather than comparing model responses to subjective responses on a set of pre-selected stimuli, the stimuli are computer-synthesized so as to optimally distinguish the models. Specifically, given two computational models that take a stimulus as an input and predict a perceptually discriminable quantity, we first synthesize a pair of stimuli that maximize/minimize the response of one model while holding the other fixed. We then repeat this procedure, but with the roles of the two models reversed. Subjective testing on pairs of such synthesized stimuli provides a strong indication of the relative strengths and weaknesses of the two models. Specifically, the model whose extremal stimulus pairs are easier for subjects to discriminate is the better model. Moreover, careful study of the synthesized stimuli may suggest potential ways to improve a model or to combine aspects of multiple models. We demonstrate the methodology for two example perceptual quantities: contrast and image quality
PMCID:4143340
PMID: 18831621
ISSN: 1534-7362
CID: 143621

Myosin II has distinct functions in PNS and CNS myelin sheath formation

Wang, Haibo; Tewari, Ambika; Einheber, Steven; Salzer, James L; Melendez-Vasquez, Carmen V
The myelin sheath forms by the spiral wrapping of a glial membrane around the axon. The mechanisms responsible for this process are unknown but are likely to involve coordinated changes in the glial cell cytoskeleton. We have found that inhibition of myosin II, a key regulator of actin cytoskeleton dynamics, has remarkably opposite effects on myelin formation by Schwann cells (SC) and oligodendrocytes (OL). Myosin II is necessary for initial interactions between SC and axons, and its inhibition or down-regulation impairs their ability to segregate axons and elongate along them, preventing the formation of a 1:1 relationship, which is critical for peripheral nervous system myelination. In contrast, OL branching, differentiation, and myelin formation are potentiated by inhibition of myosin II. Thus, by controlling the spatial and localized activation of actin polymerization, myosin II regulates SC polarization and OL branching, and by extension their ability to form myelin. Our data indicate that the mechanisms regulating myelination in the peripheral and central nervous systems are distinct
PMCID:2542477
PMID: 18794332
ISSN: 1540-8140
CID: 94628

A Point Process Approach to Assess Dynamic Baroreflex Gain

Chen, Z; Brown, En; Barbieri, R
Evaluation of arterial baroreflex in cardiovascular control is an important topic in cardiology and clinical medicine. In this paper, we present a point process approach to estimate the dynamic baroreflex gain in a closed-loop model of the cardiovascular system. Specifically, the inverse Gaussian probability distribution is used to model the heartbeat interval, whereas the instantaneous mean is modulated by a bivariate autoregressive model that contains the previous R-R intervals and systolic blood pressure (SBP) measures. The instantaneous baroreflex gain is estimated in the feedback loop with a point process filter, while the RR→SBP feedforward frequency response gain can be estimated by a Kalman filter. The proposed estimation approach provides a quantitative assessment of interacting heartbeat dynamics and hemodynamics. We validate our approach with real physiological signals and evaluate the proposed model with established goodness-of-fit tests.
PMCID:2676855
PMID: 19756137
ISSN: 0276-6574
CID: 3631462