Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14178


Software tools for molecular microscopy

Smith, Ross; Carragher, Bridget
In our role as the editors of a special edition of the Journal of Structural Biology published in 1996 and devoted to the development of software tools, we offer our view of past developments and future prospects in this area. The astonishing progress in computer hardware over the past decade has fueled a significant increase in computational power available for the solution of macromolecular structures. At the same time the relatively slow growth and development of the accompanying software reflects the difficulties of developing large, complex and very specialized analytical methods
PMCID:2572711
PMID: 18406627
ISSN: 1095-8657
CID: 90768

Skewing the Th cell phenotype toward Th1 alters the maturation of tumor-infiltrating mononuclear phagocytes

Nonaka, Kenichi; Saio, Masanao; Suwa, Tatsuhiko; Frey, Alan B; Umemura, Naoki; Imai, Hisashi; Ouyang, Guan-Feng; Osada, Shinji; Balazs, Margit; Adany, Roza; Kawaguchi, Yoshihiro; Yoshida, Kazuhiro; Takami, Tsuyoshi
Mononuclear phagocytes (MPCs) at the tumor site can be divided into subclasses, including monocyte-lineage myeloid-derived suppressor cells (MDSCs) and the immunosuppressive tumor-infiltrating macrophages (TIMs). Cancer growth coincides with the expansion of MDSCs found in the blood, secondary lymphoid organs, and tumor tissue. These MDSCs are thought to mature into macrophages and to promote tumor development by a combination of growth-enhancing properties and suppression of local antitumor immunoresponses. As little is known about either subset of MPCs, we investigated MPCs infiltrating into murine adenocarcinoma MCA38 tumors. We found that these MPCs displayed immunosuppressive characteristics and a MDSC cell-surface phenotype. Over 70% of the MPCs were mature (F4/80(+)Ly6C(-)) macrophages, and the rest were immature (F480(+) Ly6C(+)) monocytes. MPC maturation was inhibited when the cells infiltrated a tumor variant expressing IL-2 and soluble TNF type II receptor (sTNFRII). In addition, the IL-2/sTNFRII MCA38 tumor microenvironment altered the MPC phenotype; these cells did not survive culturing in vitro as a result of Fas-mediated apoptosis and negligible M-CSFR expression. Furthermore, CD4(+) tumor-infiltrating lymphocytes (TILs) in wild-type tumors robustly expressed IL-13, IFN-gamma, and GM-CSF, and CD4(+) TILs in IL-2/sTNFRII-expressing tumors expressed little IL-13. These data suggest that immunotherapy-altered Th cell balance in the tumor microenvironment can affect the differentiation and maturation of MPCs in vivo. Furthermore, as neither the designation MDSC nor TIM can sufficiently describe the status of monocytes/macrophages in this tumor microenvironment, we believe these cells are best designated as MPCs
PMID: 18566103
ISSN: 0741-5400
CID: 96103

A perspective on the structural studies of inner membrane electrochemical potential-driven transporters

Lemieux, M Joanne
Electrochemical potential-driven transporters represent a vast array of proteins with varied substrate specificities. While diverse in size and substrate specificity, they are all driven by electrochemical potentials. Over the past five years there have been increasing numbers of X-ray structures reported for this family of transporters. Structural information is available for five subfamilies of electrochemical potential-driven transporters. No structural information exists for the remaining 91 subfamilies. In this review, the various subfamilies of electrochemical potential-driven transporters are discussed. The seven reported structures for the electrochemical potential-driven transporters and the methods for their crystallization are also presented. With a few exceptions, overall crystallization trends have been very similar for the transporters despite their differences in substrate specificity and topology. Also discussed is why the structural studies on these transporters were successful while others are not as fruitful. With the plethora of transporters with unknown structures, this review provides incentive for crystallization of transporters in the remaining subfamilies for which no structural information exists.
PMID: 18252193
ISSN: 0006-3002
CID: 2286722

Interactions between the L1 cell adhesion molecule and ezrin support traction-force generation and can be regulated by tyrosine phosphorylation

Sakurai, Takeshi; Gil, Orlando D; Whittard, John D; Gazdoiu, Mihaela; Joseph, Todd; Wu, James; Waksman, Adam; Benson, Deanna L; Salton, Stephen R; Felsenfeld, Dan P
An Ig superfamily cell-adhesion molecule, L1, forms an adhesion complex at the cell membrane containing both signaling molecules and cytoskeletal proteins. This complex mediates the transduction of extracellular signals and generates actin-mediated traction forces, both of which support axon outgrowth. The L1 cytoplasmic region binds ezrin, an adapter protein that interacts with the actin cytoskeleton. In this study, we analyzed L1-ezrin interactions in detail, assessed their role in generating traction forces by L1, and identified potential regulatory mechanisms controlling ezrin-L1 interactions. The FERM domain of ezrin binds to the juxtamembrane region of L1, demonstrated by yeast two-hybrid interaction traps and protein binding analyses in vitro. A lysine-to-leucine substitution in this domain of L1 (K1147L) shows reduced binding to the ezrin FERM domain. Additionally, in ND7 cells, the K1147L mutation inhibits retrograde movement of L1 on the cell surface that has been linked to the generation of the traction forces necessary for axon growth. A membrane-permeable peptide consisting of the juxtamembrane region of L1 that can disrupt endogenous L1-ezrin interactions inhibits neurite extension of cerebellar cells on L1 substrates. Moreover, the L1-ezrin interactions can be modulated by tyrosine phosphorylation of the L1 cytoplasmic region, namely, Y1151, possibly through Src-family kinases. Replacement of this tyrosine together with Y1176 with either aspartate or phenylalanine changes ezrin binding and alters colocalization with ezrin in ND7 cells. Collectively, these data suggest that L1-ezrin interactions mediated by the L1 juxtamembrane region are involved in traction-force generation and can be regulated by the phosphorylation of L1.
PMCID:2730939
PMID: 18478542
ISSN: 1097-4547
CID: 2518552

Diabetes impairs the hypoxia response by blocking hypoxia inducible factor-1alpha binding to p300 [Meeting Abstract]

Thangarajah, Haribaran; Sbi, Yubin; Yao, Dachun; Jazayeri, Leila; Chang, Edward I.; Vial, I. Nick; Galiano, Robert D.; Ceradini, Daniel J.; Brownlee, Michael; Gurtner, Geoffrey C.
ISI:000259288500263
ISSN: 1072-7515
CID: 146286

Supramolecular complex formation and crystallization of isocitrate dehydrogenase from Thermus thermophilus HB8: preliminary studies with X-Ray crystallography and atomic force microscopy

Ishii, Noriyuki; Umemura, Kazuo; Miyazaki, Kentaro
Atomic force microscopy (AFM) observation of a crystal surface of the thermostable isocitrate dehydrogenase (ICDH) from a thermophilic eubacterium, Thermus thermophilus HB8, suggested that the crystal consists of huge homo-complexed ellipsoidal bodies of the protein, with averaged long- and short-axis diameters of 18.6 nm and 10.9 nm respectively. Thick diamond-shaped crystals of about 0.4 mm on the longest axis were obtained by the vapor diffusion method from a solution of 100 mM sodium cacodylate, pH 6.6-8.4, containing 1.4 M sodium acetate as the precipitate, and diffracted X-rays at 3.7 A resolution. The crystals belonged to the monoclinic lattice type with space group C2 and had cell dimensions of a=495.5, b=189.2, c=336.2 A, and beta=126.4 degrees , indicating that an asymmetric unit contained more than 33 molecules with a molecular mass of 54.2 kDa. Calculations based on data obtained by the X-ray method showed good agreement with AFM observation. These results suggest the possibility that the residing T. thermophilus HB8 ICDH molecules are piled one on top another as a preformed supramolecular nano-architecture in the crystal lattice. The system appears suitable for further investigation using a bottom-up approach to the self-associated construction of nano-architectures with proteins.
PMID: 18776690
ISSN: 1347-6947
CID: 2983412

A "FLP-Out" system for controlled gene expression in Caenorhabditis elegans

Voutev, Roumen; Hubbard, E Jane Albert
We present a two-part system for conditional FLP-out of FRT-flanked sequences in Caenorhabditis elegans to control gene activity in a spatially and/or temporally regulated manner. Using reporters, we assess the system for efficacy and demonstrate its use as a cell lineage marking tool. In addition, we construct and test a dominant-negative form of hlh-12, a gene that encodes a basic helix-loop-helix (bHLH) transcription factor required for proper distal tip cell (DTC) migration. We show that this allele can be conditionally expressed from a heat-inducible FLP recombinase and can interfere with DTC migration. Using the same DTC assay, we conditionally express an hlh-12 RNAi-hairpin and induce the DTC migration defect. Finally, we introduce a set of traditional and Gateway-compatible vectors to facilitate construction of plasmids for this technology using any promoter, reporter, and gene/hairpin of interest
PMCID:2535667
PMID: 18723890
ISSN: 0016-6731
CID: 90876

RXP-E: a connexin43-binding peptide that prevents action potential propagation block

Lewandowski, Rebecca; Procida, Kristina; Vaidyanathan, Ravi; Coombs, Wanda; Jalife, Jose; Nielsen, Morten S; Taffet, Steven M; Delmar, Mario
Gap junctions provide a low-resistance pathway for cardiac electric propagation. The role of GJ regulation in arrhythmia is unclear, partly because of limited availability of pharmacological tools. Recently, we showed that a peptide called 'RXP-E' binds to the carboxyl terminal of connexin43 and prevents chemically induced uncoupling in connexin43-expressing N2a cells. Here, pull-down experiments show RXP-E binding to adult cardiac connexin43. Patch-clamp studies revealed that RXP-E prevented heptanol-induced and acidification-induced uncoupling in pairs of neonatal rat ventricular myocytes. Separately, RXP-E was concatenated to a cytoplasmic transduction peptide (CTP) for cytoplasmic translocation (CTP-RXP-E). The effect of RXP-E on action potential propagation was assessed by high-resolution optical mapping in monolayers of neonatal rat ventricular myocytes, containing approximately 20% of randomly distributed myofibroblasts. In contrast to control experiments, when heptanol (2 mmol/L) was added to the superfusate of monolayers loaded with CTP-RXP-E, action potential propagation was maintained, albeit at a slower velocity. Similarly, intracellular acidification (pH(i) 6.2) caused a loss of action potential propagation in control monolayers; however, propagation was maintained in CTP-RXP-E-treated cells, although at a slower rate. Patch-clamp experiments revealed that RXP-E did not prevent heptanol-induced block of sodium currents, nor did it alter voltage dependence or amplitude of Kir2.1/Kir2.3 currents. RXP-E is the first synthetic molecule known to: (1) bind cardiac connexin43; (2) prevent heptanol and acidification-induced uncoupling of cardiac gap junctions; and (3) preserve action potential propagation among cardiac myocytes. RXP-E can be used to characterize the role of gap junctions in the function of multicellular systems, including the heart
PMCID:2749574
PMID: 18669919
ISSN: 1524-4571
CID: 113849

Functional characterization of fingers subdomain-specific monoclonal antibodies inhibiting the hepatitis C virus RNA-dependent RNA polymerase

Nikonov, Andrei; Juronen, Erkki; Ustav, Mart
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), encoded by nonstructural protein 5B (NS5B), is absolutely essential for the viral replication. Here we describe the development, characterization, and functional properties of the panel of monoclonal antibodies (mAbs) and specifically describe the mechanism of action of two mAbs inhibiting the NS5B RdRp activity. These mAbs recognize and bind to distinct linear epitopes in the fingers subdomain of NS5B. The mAb 8B2 binds the N-terminal epitope of the NS5B and inhibits both primer-dependent and de novo RNA synthesis. mAb 8B2 selectively inhibits elongation of RNA chains and enhances the RNA template binding by NS5B. In contrast, mAb 7G8 binds the epitope that contains motif G conserved in viral RdRps and inhibits only primer-dependent RNA synthesis by specifically targeting the initiation of RNA synthesis, while not interfering with the binding of template RNA by NS5B. To reveal the importance of the residues of mAb 7G8 epitope for the initiation of RNA synthesis, we performed site-directed mutagenesis and extensively characterized the functionality of the HCV RdRp motif G. Comparison of the mutation effects in both in vitro primer-dependent RdRp assay and cellular transient replication assay suggested that mAb 7G8 epitope amino acid residues are involved in the interaction of template-primer or template with HCV RdRp. The data presented here allowed us to describe the functionality of the epitopes of mAbs 8B2 and 7G8 in the HCV RdRp activity and suggest that the epitopes recognized by these mAbs may be useful targets for antiviral drugs.
PMCID:3259772
PMID: 18574240
ISSN: 0021-9258
CID: 2505242

Football- and bullet-shaped GroEL-GroES complexes coexist during the reaction cycle

Sameshima, Tomoya; Ueno, Taro; Iizuka, Ryo; Ishii, Noriyuki; Terada, Naofumi; Okabe, Kohki; Funatsu, Takashi
GroEL is an Escherichia coli chaperonin that is composed of two heptameric rings stacked back-to-back. GroEL assists protein folding with its cochaperonin GroES in an ATP-dependent manner in vitro and in vivo. However, it is still unclear whether GroES binds to both rings of GroEL simultaneously under physiological conditions. In this study, we monitored the GroEL-GroES interaction in the reaction cycle using fluorescence resonance energy transfer. We found that nearly equivalent amounts of symmetric GroEL-(GroES)(2) (football-shaped) complex and asymmetric GroEL-GroES (bullet-shaped) complex coexist during the functional reaction cycle. We also found that D398A, an ATP hydrolysis defective mutant of GroEL, forms a football-shaped complex with ATP bound to the two rings. Furthermore, we showed that ADP prevents the association of ATP to the trans-ring of GroEL, and as a consequence, the second GroES cannot bind to GroEL. Considering the concentrations of ADP and ATP in E. coli, ADP is expected to have a small effect on the inhibition of GroES binding to the trans-ring of GroEL in vivo. These results suggest that we should reconsider the chaperonin-mediated protein-folding mechanism that involves the football-shaped complex.
PMCID:3259762
PMID: 18567585
ISSN: 0021-9258
CID: 2983322