Searched for: school:SOM
Department/Unit:Neuroscience Institute
Regulating enzymatic activity with a photoswitchable affinity label
Harvey, Jessica H; Trauner, Dirk
PMCID:2744286
PMID: 18085544
ISSN: 1439-7633
CID: 2485352
Homocysteine lowering and severe kidney disease - Reply [Letter]
Jamison, RL; Guarino, PD; Goldfarb, DS; Warren, SR
ISI:000252497800019
ISSN: 0098-7484
CID: 75697
A technique for characterizing the development of rhythms in bird song
Saar, Sigal; Mitra, Partha P
The developmental trajectory of nervous system dynamics shows hierarchical structure on time scales spanning ten orders of magnitude from milliseconds to years. Analyzing and characterizing this structure poses significant signal processing challenges. In the context of birdsong development, we have previously proposed that an effective way to do this is to use the dynamic spectrum or spectrogram, a classical signal processing tool, computed at multiple time scales in a nested fashion. Temporal structure on the millisecond timescale is normally captured using a short time Fourier analysis, and structure on the second timescale using song spectrograms. Here we use the dynamic spectrum on time series of song features to study the development of rhythm in juvenile zebra finch. The method is able to detect rhythmic structure in juvenile song in contrast to previous characterizations of such song as unstructured. We show that the method can be used to examine song development, the accuracy with which rhythm is imitated, and the variability of rhythms across different renditions of a song. We hope that this technique will provide a standard, automated method for measuring and characterizing song rhythm
PMCID:2180191
PMID: 18213370
ISSN: 1932-6203
CID: 143183
Niche players: spermatogonial progenitors marked by GPR125
Seandel, Marco; Falciatori, Ilaria; Shmelkov, Sergey V; Kim, Jiyeon; James, Daylon; Rafii, Shahin
The undifferentiated spermatogonia of adult mouse testes are composed of both true stem cells and committed progenitors. It is unclear what normally prevents these adult germ cells from manifesting multipotency. The critical elements of the spermatogonial stem cell niche, while poorly understood, are thought to be composed of Sertoli cells with several other somatic cell types in close proximity. We recently discovered a novel orphan G-protein coupled receptor (GPR125) that is restricted to undifferentiated spermatogonia within the testis. GPR125 expression was maintained when the progenitor cells were extracted from the in vivo niche and propagated under growth conditions that recapitulate key elements of the niche. Such conditions preserved the ability of the cells to generate multipotent derivatives, known as multipotent adult spermatogonial derived progenitor cells (MASCs). Upon differentiation, the latter produced a variety tissues including functional endothelium, illustrating the potential applications of such cells. Thus, GPR125 represents a novel target for purifying adult stem and progenitors from tissues, with the goal of developing autologous multipotent cell lines
PMCID:2951313
PMID: 18256534
ISSN: 1551-4005
CID: 137392
Reversibility of PRKAG2 glycogen-storage cardiomyopathy and electrophysiological manifestations
Wolf, Cordula M; Arad, Michael; Ahmad, Ferhaan; Sanbe, Atsushi; Bernstein, Scott A; Toka, Okan; Konno, Tetsuo; Morley, Gregory; Robbins, Jeffrey; Seidman, J G; Seidman, Christine E; Berul, Charles I
BACKGROUND: PRKAG2 mutations cause glycogen-storage cardiomyopathy, ventricular preexcitation, and conduction system degeneration. A genetic approach that utilizes a binary inducible transgenic system was used to investigate the disease mechanism and to assess preventability and reversibility of disease features in a mouse model of glycogen-storage cardiomyopathy. METHODS AND RESULTS: Transgenic (Tg) mice expressing a human N488I PRKAG2 cDNA under control of the tetracycline-repressible alpha-myosin heavy chain promoter underwent echocardiography, ECG, and in vivo electrophysiology studies. Transgene suppression by tetracycline administration caused a reduction in cardiac glycogen content and was initiated either prenatally (Tg(OFF(E-8 weeks))) or at different time points during life (Tg(OFF(4-16 weeks)), Tg(OFF(8-20 weeks)), and Tg(OFF(>20 weeks))). One group never received tetracycline, expressing transgene throughout life (Tg(ON)). Tg(ON) mice developed cardiac hypertrophy followed by dilatation, ventricular preexcitation involving multiple accessory pathways, and conduction system disease, including sinus and atrioventricular node dysfunction. CONCLUSIONS: Using an externally modifiable transgenic system, cardiomyopathy, cardiac dysfunction, and electrophysiological disorders were demonstrated to be reversible processes in PRKAG2 disease. Transgene suppression during early postnatal development prevented the development of accessory electrical pathways but not cardiomyopathy or conduction system degeneration. Taken together, these data provide insight into mechanisms of cardiac PRKAG2 disease and suggest that glycogen-storage cardiomyopathy can be modulated by lowering glycogen content in the heart
PMCID:2957811
PMID: 18158359
ISSN: 1524-4539
CID: 135319
Inhibition of Hsp90 down-regulates mutant epidermal growth factor receptor (EGFR) expression and sensitizes EGFR mutant tumors to paclitaxel
Sawai, Ayana; Chandarlapaty, Sarat; Greulich, Heidi; Gonen, Mithat; Ye, Qing; Arteaga, Carlos L; Sellers, William; Rosen, Neal; Solit, David B
Mutations in the kinase domain of the epidermal growth factor receptor (EGFR) are found in a subset of patients with lung cancer and correlate with response to EGFR tyrosine kinase inhibitors (TKI). Resistance to these agents invariably develops, and current treatment strategies have limited efficacy in this setting. Hsp90 inhibitors, such as 17-allylamino-17-demethoxygeldanamycin (17-AAG), induce the degradation of EGFR and other Hsp90 interacting proteins and may thus have utility in tumors dependent upon sensitive Hsp90 clients. We find that the EGFR mutations found most commonly in patients with lung adenocarcinoma who respond to EGFR TKIs are potently degraded by 17-AAG. Although the expression of wild-type EGFR was also down-regulated by 17-AAG, its degradation required higher concentrations of drug and a longer duration of drug exposure. In animal models, a single dose of 17-AAG was sufficient to induce degradation of mutant EGFR and inhibit downstream signaling. 17-AAG treatment, at its maximal tolerated dose, caused a significant delay in H3255 (L858R EGFR) xenograft growth but was less effective than the EGFR TKI gefitinib. 17-AAG alone delayed, but did not completely inhibit, the growth of H1650 and H1975 xenografts, two EGFR mutant models which show intermediate and high levels of gefitinib resistance. 17-AAG could be safely coadministered with paclitaxel, and the combination was significantly more effective than either drug alone. These data suggest that Hsp90 inhibition in combination with chemotherapy may represent an effective treatment strategy for patients whose tumors express EGFR kinase domain mutations, including those with de novo and acquired resistance to EGFR TKIs.
PMCID:4011195
PMID: 18199556
ISSN: 0008-5472
CID: 379552
Biomimetic synthesis of the shimalactones
Sofiyev, Vladimir; Navarro, Gabriel; Trauner, Dirk
A biomimetic synthesis of shimalactone A and B is described. Its key features are an unprecedented acid-catalyzed cyclization of a dienyl beta-ketolactone and a Stille coupling/8pi-6pi electrocyclization cascade to create the oxabicyclo[2.2.1]heptane and bicyclo[4.2.0]octadiene, respectively. The synthesis is convergent and void of protecting groups.
PMID: 18072785
ISSN: 1523-7060
CID: 2485372
Vascular endothelial growth factor is up-regulated after status epilepticus and protects against seizure-induced neuronal loss in hippocampus
Nicoletti, J N; Shah, S K; McCloskey, D P; Goodman, J H; Elkady, A; Atassi, H; Hylton, D; Rudge, J S; Scharfman, H E; Croll, S D
Vascular endothelial growth factor (VEGF) is a protein factor which has been found to play a significant role in both normal and pathological states. Its role as an angiogenic factor is well-established. More recently, VEGF has been shown to protect neurons from cell death both in vivo and in vitro. While VEGF's potential as a protective factor has been demonstrated in hypoxia-ischemia, in vitro excitotoxicity, and motor neuron degeneration, its role in seizure-induced cell loss has received little attention. A potential role in seizures is suggested by Newton et al.'s [Newton SS, Collier EF, Hunsberger J, Adams D, Terwilliger R, Selvanayagam E, Duman RS (2003) Gene profile of electroconvulsive seizures: Induction of neurotrophic and angiogenic factors. J Neurosci 23:10841-10851] finding that VEGF mRNA increases in areas of the brain that are susceptible to cell loss after electroconvulsive-shock induced seizures. Because a linear relationship does not always exist between expression of mRNA and protein, we investigated whether VEGF protein expression increased after pilocarpine-induced status epilepticus. In addition, we administered exogenous VEGF in one experiment and blocked endogenous VEGF in another to determine whether VEGF exerts a neuroprotective effect against status epilepticus-induced cell loss in one vulnerable brain region, the rat hippocampus. Our data revealed that VEGF is dramatically up-regulated in neurons and glia in hippocampus, thalamus, amygdala, and neocortex 24 h after status epilepticus. VEGF induced significant preservation of hippocampal neurons, suggesting that VEGF may play a neuroprotective role following status epilepticus
PMCID:2212620
PMID: 18065154
ISSN: 0306-4522
CID: 76099
Meshless deformable models for LV motion analysis
Chapter by: Wang, Xiaoxu; Metaxas, Dimitis; Chen, Ting; Axel, Leon
in: 2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12 by
NEW YORK : IEEE, 2008
pp. 1736-?
ISBN: 978-1-4244-2242-5
CID: 2932212
Competition between functional brain networks mediates behavioral variability
Kelly, A M Clare; Uddin, Lucina Q; Biswal, Bharat B; Castellanos, F Xavier; Milham, Michael P
Increased intraindividual variability (IIV) is a hallmark of disorders of attention. Recent work has linked these disorders to abnormalities in a "default mode" network, comprising brain regions routinely deactivated during goal-directed cognitive tasks. Findings from a study of the neural basis of attentional lapses suggest that a competitive relationship between the "task-negative" default mode network and regions of a "task-positive" attentional network is a potential locus of dysfunction in individuals with increased IIV. Resting state studies have shown that this competitive relationship is intrinsically represented in the brain, in the form of a negative correlation or antiphase relationship between spontaneous activity occurring in the two networks. We quantified the negative correlation between these two networks in 26 subjects, during active (Eriksen flanker task) and resting state scans. We hypothesized that the strength of the negative correlation is an index of the degree of regulation of activity in the default mode and task-positive networks and would be positively related to consistent behavioral performance. We found that the strength of the correlation between the two networks varies across individuals. These individual differences appear to be behaviorally relevant, as interindividual variation in the strength of the correlation was significantly related to individual differences in response time variability: the stronger the negative correlation (i.e., the closer to 180 degrees antiphase), the less variable the behavioral performance. This relationship was moderately consistent across resting and task conditions, suggesting that the measure indexes moderately stable individual differences in the integrity of functional brain networks. We discuss the implications of these findings for our understanding of the behavioral significance of spontaneous brain activity, in both healthy and clinical populations.
PMID: 17919929
ISSN: 1053-8119
CID: 159215