Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14178


Imaging mass spectrometry reveals unique protein profiles during embryo implantation

Burnum, Kristin E; Tranguch, Susanne; Mi, Deming; Daikoku, Takiko; Dey, S K; Caprioli, Richard M
A reciprocal interaction between the implantation-competent blastocyst and receptive uterus is an absolute requirement for implantation, a process crucial for pregnancy success. A comprehensive understanding of this interaction has yet to be realized. One major difficulty in clearly defining this discourse is the complexity of the implantation process involving heterogeneous cell types of both the uterus and blastocyst, each endowed with unique molecular signatures that show dynamic changes during the course of pregnancy. Whereas gene expression studies by in situ hybridization or immunohistochemistry have shown differential expression patterns of specific genes during implantation, there is no report how numerous signaling proteins are spatially displayed at specific times and stages of implantation in the context of blastocyst-uterine juxtaposition. Using in situ imaging (matrix assisted laser desorption/ionization) mass spectrometry directly on uterine sections, here we provide molecular composition, relative abundance, and spatial distribution of a large number of proteins during the periimplantation period. This approach has allowed us for the first time to generate in situ proteome profiles of implantation and interimplantation sites in mice in a region- and stage-specific manner with the progression of implantation. This application is reliable because patterns of expression of several proteins displayed by in situ imaging mass spectrometry correlate well with in situ hybridization results. More interestingly, the use of this approach has provided new insights regarding uterine biology of cytosolic phospholipase A(2alpha) null females that show implantation defects.
PMCID:2453082
PMID: 18403475
ISSN: 0013-7227
CID: 2157242

Dystrophic serotonergic axons in neurodegenerative diseases

Azmitia, Efrain C; Nixon, Ralph
Neurodegenerative diseases such as Parkinson's disease (PD), frontal lobe dementia (FLD) and diffuse Lewy-body dementia (DLBD) have diverse neuropathologic features. Here we report that serotonin fibers are dystrophic in the brains of individuals with these three diseases. In neuropathologically normal (control) brains (n=3), serotonin axons immunoreactive (IR) with antibodies against the serotonin transporter (5-HTT) protein were widely distributed in cortex (entorhinal and dorsolateral prefrontal), hippocampus and rostral brainstem. 5-HTT-IR fibers-of-passage appeared thick, smooth, and unbranched in medial forebrain bundle, medial lemniscus and cortex white matter. The terminal branches were fine, highly branched and varicose in substantia nigra, hippocampus and cortical gray matter. In the diseased brains, however, 5-HTT-IR fibers in the forebrain were reduced in number and were frequently bulbous, splayed, tightly clustered and enlarged. Morphometric analysis revealed significant differences in the size distribution of the 5-HTT-IR profiles in dorsolateral prefrontal area between neurodegenerative diseases and controls. Our observations provide direct morphologic evidence for degeneration of human serotonergic axons in the brains of patients with neurodegenerative diseases despite the limited size (n=3 slices for each region (3) from each brain (4), total slices was n=36) and the lack of extensive clinical characterization of the analyzed cohort. This is the first report of dystrophic 5-HTT-IR axons in postmortem human tissue
PMCID:3405553
PMID: 18502405
ISSN: 0006-8993
CID: 79132

Polarization of the C. elegans embryo by RhoGAP-mediated exclusion of PAR-6 from cell contacts

Anderson, Dorian C; Gill, Jason S; Cinalli, Ryan M; Nance, Jeremy
Early embryos of some metazoans polarize radially to facilitate critical patterning events such as gastrulation and asymmetric cell division; however, little is known about how radial polarity is established. Early embryos of Caenorhabditis elegans polarize radially when cell contacts restrict the polarity protein PAR-6 to contact-free cell surfaces, where PAR-6 regulates gastrulation movements. We have identified a Rho guanosine triphosphatase activating protein (RhoGAP), PAC-1, which mediates C. elegans radial polarity and gastrulation by excluding PAR-6 from contacted cell surfaces. We show that PAC-1 is recruited to cell contacts, and we suggest that PAC-1 controls radial polarity by restricting active CDC-42 to contact-free surfaces, where CDC-42 binds and recruits PAR-6. Thus, PAC-1 provides a dynamic molecular link between cell contacts and PAR proteins that polarizes embryos radially
PMCID:2670547
PMID: 18583611
ISSN: 1095-9203
CID: 79469

Macrophage migration inhibitory factor induces cardiomyocyte apoptosis

Dhanantwari, Preeta; Nadaraj, Sumekala; Kenessey, Agnes; Chowdhury, Devyani; Al-Abed, Yousef; Miller, Edmund J; Ojamaa, Kaie
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that causes cardiac contractile dysfunction, whereas inactivation of MIF improves cardiac function in experimental animal models of sepsis. We used cultured cardiomyocytes to determine whether MIF-induced contractile dysfunction was mediated in part by myocyte apoptosis and to identify MIF-activated intracellular signaling pathways in this process. MIF treatment significantly increased myocyte apoptosis in a dose-dependent manner to 15.5+/-3.9% and 26.0+/-7.1% TUNEL positive nuclei (20 and 30 ng/ml MIF for 24h) vs control (3.7+/-0.9%). This effect was attenuated by inactivation of MIF with the chemical inhibitor, ISO-1. MIF-induced cleavage of caspase 3 and reduction of Bcl-xL/Bax were similarly attenuated by ISO-1 pre-treatment. MIF stimulated the rapid, transient phosphorylation of stress kinases, p38MAPK and JNK. Thus, MIF induces cardiomyocyte apoptosis by activating stress kinases and mitochondria-associated apoptotic mechanisms, whereas inactivation of MIF pro-inflammatory activity improves cardiomyocyte survival
PMCID:3104268
PMID: 18439909
ISSN: 1090-2104
CID: 93902

Direct binding of integrin alphavbeta3 to FGF1 plays a role in FGF1 signaling

Mori, Seiji; Wu, Chun-Yi; Yamaji, Satoshi; Saegusa, Jun; Shi, Biao; Ma, Zi; Kuwabara, Yasuko; Lam, Kit S; Isseroff, R Rivkah; Takada, Yoko K; Takada, Yoshikazu
Integrins play a role in fibroblast growth factor (FGF) signaling through cross-talk with FGF receptors (FGFRs), but the mechanism underlying the cross-talk is unknown. We discovered that FGF1 directly bound to soluble and cell-surface integrin alphavbeta3 (K(D) about 1 microm). Antagonists to alphavbeta3 (monoclonal antibody 7E3 and cyclic RGDfV) blocked this interaction. alphavbeta3 was the predominant, if not the only, integrin that bound to FGF1, because FGF1 bound only weakly to several beta1 integrins tested. We presented evidence that the CYDMKTTC sequence (the specificity loop) within the ligand-binding site of beta3 plays a role in FGF1 binding. We found that the integrin-binding site of FGF1 overlaps with the heparin-binding site but is distinct from the FGFR-binding site using docking simulation and mutagenesis. We identified an FGF1 mutant (R50E) that was defective in integrin binding but still bound to heparin and FGFR. R50E was defective in inducing DNA synthesis, cell proliferation, cell migration, and chemotaxis, suggesting that the direct integrin binding to FGF1 is critical for FGF signaling. Nevertheless, R50E induced phosphorylation of FGFR1 and FRS2alpha and activation of AKT and ERK1/2. These results suggest that the defect in R50E in FGF signaling is not in the initial activation of FGF signaling pathway components, but in the later steps in FGF signaling. We propose that R50E is a useful tool to identify the role of integrins in FGF signaling
PMCID:2440593
PMID: 18441324
ISSN: 0021-9258
CID: 133043

Reprogramming of pancreatic beta cells into induced pluripotent stem cells

Stadtfeld, Matthias; Brennand, Kristen; Hochedlinger, Konrad
Induced pluripotent stem (iPS) cells have been derived from fibroblast, stomach, and liver cultures at extremely low frequencies by ectopic expression of the transcription factors Oct4, Sox2, c-myc, and Klf4, a process coined direct or in vitro reprogramming [1-8]. iPS cells are molecularly and functionally highly similar to embryonic stem cells (ESCs), including their ability to contribute to all tissues as well as the germline in mice. The heterogeneity of the starting cell populations and the low efficiency of reprogramming suggested that a rare cell type, such as an adult stem cell, might be the cell of origin for iPS cells and that differentiated cells are refractory to reprogramming. Here, we used inducible lentiviruses [9] to express Oct4, Sox2, c-myc, and Klf4 in pancreatic beta cells to assess whether a defined terminally differentiated cell type remains amenable to reprogramming. Genetically marked beta cells gave rise to iPS cells that expressed pluripotency markers, formed teratomas, and contributed to cell types of all germ layers in chimeric animals. Our results provide genetic proof that terminally differentiated cells can be reprogrammed into pluripotent cells, suggesting that in vitro reprogramming is not restricted to certain cell types or differentiation stages
PMCID:2819222
PMID: 18501604
ISSN: 0960-9822
CID: 149106

Phosphorylation and dephosphorylation of tyrosine 141 regulate stability and degradation of INrf2: a novel mechanism in Nrf2 activation

Jain, Abhinav K; Mahajan, Shilpi; Jaiswal, Anil K
INrf2-Nrf2 proteins are sensors of chemical/radiation stress. Nrf2, in response to stresses, is released from INrf2. Nrf2 is translocated into the nucleus where it binds to the antioxidant response element and coordinately activates the expression of a battery of genes that protect cells against oxidative and electrophilic stress. An autoregulatory loop between INrf2 and Nrf2 regulates their cellular abundance. Nrf2 activates INrf2 gene expression, and INrf2 serves as an adapter for degradation of Nrf2. In this report, we demonstrate that mutation of tyrosine 141 in bric-a-bric, tramtrack, broad complex domain to alanine rendered INrf2 unstable and nonfunctional. INrf2Y141A mutant degraded rapidly as compared with wild type INrf2, although it could dimerize and bind Nrf2. De novo synthesized INrf2 protein was phosphorylated at tyrosine 141. Tyrosine 141-phosphorylated INrf2 was highly stable. Treatment with hydrogen peroxide, which is an oxidizing agent, led to dephosphorylation of INrf2Y141, resulting in rapid degradation of INrf2. This resulted in stabilization of Nrf2 and activation of ARE-mediated gene expression. These results demonstrate that stress-induced dephosphorylation of tyrosine 141 is a novel mechanism in Nrf2 activation and cellular protection.
PMCID:2427343
PMID: 18434303
ISSN: 0021-9258
CID: 989352

In vivo diffusion of lactoferrin in brain extracellular space is regulated by interactions with heparan sulfate

Thorne, Robert G; Lakkaraju, Aparna; Rodriguez-Boulan, Enrique; Nicholson, Charles
The intercellular spaces between neurons and glia contain an amorphous, negatively charged extracellular matrix (ECM) with the potential to shape and regulate the distribution of many diffusing ions, proteins and drugs. However, little evidence exists for direct regulation of extracellular diffusion by the ECM in living tissue. Here, we demonstrate macromolecule sequestration by an ECM component in vivo, using quantitative diffusion measurements from integrative optical imaging. Diffusion measurements in free solution, supported by confocal imaging and binding assays with cultured cells, were used to characterize the properties of a fluorescently labeled protein, lactoferrin (Lf), and its association with heparin and heparan sulfate in vitro. In vivo diffusion measurements were then performed through an open cranial window over rat somatosensory cortex to measure effective diffusion coefficients (D*) under different conditions, revealing that D* for Lf was reduced approximately 60% by binding to heparan sulfate proteoglycans, a prominent component of the ECM and cell surfaces in brain. Finally, we describe a method for quantifying heparan sulfate binding site density from data for Lf and the structurally similar protein transferrin, allowing us to predict a low micromolar concentration of these binding sites in neocortex, the first estimate in living tissue. Our results have significance for many tissues, because heparan sulfate is synthesized by almost every type of cell in the body. Quantifying ECM effects on diffusion will also aid in the modeling and design of drug delivery strategies for growth factors and viral vectors, some of which are likely to interact with heparan sulfate
PMCID:2448851
PMID: 18541909
ISSN: 1091-6490
CID: 80294

Covalent fluorescence labeling of His-tagged proteins on the surface of living cells

Hintersteiner, Martin; Weidemann, Thomas; Kimmerlin, Thierry; Filiz, Nimet; Buehler, Christof; Auer, Manfred
PMID: 18461582
ISSN: 1439-7633
CID: 2446402

Thrombin up-regulates cathepsin D which enhances angiogenesis, growth, and metastasis

Hu, Liang; Roth, Jennifer M; Brooks, Peter; Luty, Joanna; Karpatkin, Simon
Cathepsin D (CD) up-regulation has been associated with human malignancy and poor prognosis. Thrombin up-regulated CD mRNA and protein in eight tumor cell lines as well as in human umbilical vascular endothelial cells (HUVEC). Thrombin increased the secretion of CD by 3- to 8-fold and enhanced chemotaxis ( approximately 2-fold) in 4T1 murine mammary CA cells, which was completely inhibited with the knockdown of CD. Secreted 4T1 CD induced neoangiogenesis by 2.4-fold on a chick chorioallantoic membrane, which was blocked in CD-KD cells. The addition of pure CD (2 ng) to the chick chorioallantoic membrane increased angiogenesis by 2.1-fold, which was completely inhibited by Pepstatin A (Pep A). CD enhanced human HUVEC chemotaxis and Matrigel tube formation by 2-fold, which was then blocked by Pep A. CD enhanced HUVEC matrix metalloproteinase 9 (MMP-9) activity by approximately 2-fold, which was completely inhibited by Pep A as well as a generic MMP inhibitor, GM6001. The injection of CD-KD 4T1 cells into syngeneic mice inhibited tumor growth by 3- to 4-fold compared with empty vector (EV) cells. Hirudin, a specific thrombin inhibitor, inhibited the growth of wild-type and EV cells by 2- to 3-fold, compatible with thrombin up-regulation of CD. CD and thrombin also contributed to spontaneous pulmonary metastasis; 4-fold nodule inhibition with CD versus EV and 4.6-fold inhibition with hirudin versus EV (P < 0.02). Thus, thrombin-induced CD contributes to the malignant phenotype by inducing tumor cell migration, nodule growth, metastasis, and angiogenesis. CD-induced angiogenesis requires the proteolytic activation of MMP-9
PMID: 18559512
ISSN: 1538-7445
CID: 81062